
TRUCHAS Physics and Algorithms

The TELLURIDE Team

Version 2.4.0
February 14, 2008

LA-UR-08-0819

LA-UR-08-0819

LA-UR-08-0819

LA-UR-08-0819

Contents

Contents i

List of Tables xiii

List of Figures xv

1 Introduction 1

2 Overview 3

2.1 General Issues. 4

2.1.1 Mesh Structures. 4

2.1.2 Time Splitting . 4

2.1.3 Homogenization of Material Properties. 5

2.1.4 Solvers . 5

2.1.5 Parallel Paradigm. 5

2.1.6 Languages. 6

2.2 Joule Heating Model. 6

LA-UR-08-0819 TRUCHAS Physics and Algorithms i

2.3 Phase Change and Thermal Models. 7

2.4 Radiative energy exchange. 8

2.5 Phase Diagrams. 9

2.6 Incompressible fluid flow. .10

2.6.1 Material advection step. .11

2.6.2 Velocity prediction step. .12

2.6.3 Pressure solve and velocity correction step. 13

2.7 Surface tension. .13

2.8 Chemical Reactions. .14

2.9 Solid Mechanics. .15

3 Fluid Dynamics 17

3.1 Physics .17

3.1.1 Assumptions and Approximations. 17

3.1.2 Equations. .19

3.1.3 Initial & Boundary Conditions. .21

3.1.4 Interaction With Other Physics. .22

3.1.5 Material Properties. .22

3.2 Algorithms .23

3.2.1 Interface Kinematics. .24

3.2.1.1 Representing the Interface with Volume Fractions.. 25

3.2.1.2 An Overview of the Volume Tracking Algorithm.. 26

ii T RUCHAS Physics and Algorithms LA-UR-08-0819

3.2.1.3 Estimating the Interface Normal.. 27

3.2.1.4 Locating the Interface.. .27

3.2.1.5 Representing Interfaces Bounding More Than Two Fluids.. 32

3.2.2 Interface Dynamics: Surface Tension. 35

3.2.3 Interface Topology. .37

3.2.4 Property Evaluation. .37

3.2.5 Momentum Equation. .38

3.2.6 Predictor Step. .38

3.2.7 Momentum Advection. .39

3.2.8 Momentum Diffusion. .39

3.2.9 Transfer the cell-centered Velocity to Faces. 41

3.2.9.1 Transfer of cell-centered velocities to faces when using orthogonal operators41

3.2.10 Projection. .43

3.2.11 Adjust Cell Centered Velocity for Pressure Gradient. 43

3.2.12 Flow Past Solid Material. .43

3.2.13 Flow Through Porous Media. .44

3.2.14 Treating Some Fluids as Void. .44

4 Heat Transfer and Phase Changes 47

4.1 Physics .47

4.1.1 Assumptions. .47

4.1.2 Material Properties. .48

LA-UR-08-0819 TRUCHAS Physics and Algorithms iii

4.1.3 Phase Diagrams. .50

4.1.4 Phase Changes. .51

4.1.4.1 Lever rule .52

4.1.4.2 Scheil .52

4.1.4.3 Clyne and Kurz. .53

4.1.4.4 Volume Change During Phase Change. 53

4.1.5 Boundary and Initial Conditions. .54

4.1.5.1 Radiative Boundary Conditions. 54

4.1.6 Conservation Law. .56

4.1.7 Boundary Conditions. .56

4.1.8 Interaction With Other Physics. .56

4.2 Heat Transfer Algorithm. .57

4.2.1 The Discrete Equations and the Non-linear Residual. 57

4.2.2 Preconditioninig .59

4.2.3 Heat Sources/Sinks. .60

4.2.3.1 External Heat Source. .60

5 Chemical Reactions 63

5.1 Physics .63

5.1.1 Assumptions. .64

5.1.2 Interaction With Other Physics. .64

5.2 Algorithms .64

iv TRUCHAS Physics and Algorithms LA-UR-08-0819

6 Solid Mechanics 65

6.1 Notation. .65

6.2 Physics .66

6.2.1 Assumptions. .66

6.2.2 Equations. .67

6.2.3 Boundary and Initial Conditions. .69

6.2.3.1 Notation .69

6.2.3.2 Boundary Conditions. .69

6.2.3.3 Sliding Interfaces and Contact. 70

6.2.3.4 Initial Conditions .71

6.2.4 Interaction with Other Physics. .71

6.2.5 Material Properties. .72

6.2.5.1 Linear Elasticity. .72

6.2.5.2 MTS Viscoplastic Model. 72

6.2.5.3 Power Law Viscoplastic Model. 73

6.3 Algorithms .73

6.3.1 Discretization. .73

6.3.2 Displacement Gradients. .75

6.3.3 Solution Algorithm for Quasi-Static Stresses and Strains. 76

6.3.3.1 Initialization .76

6.3.3.2 Initial Thermo-Elastic Solution. 77

LA-UR-08-0819 TRUCHAS Physics and Algorithms v

6.3.3.3 Non-Linear Thermo-Elastic-Viscoplastic Solution. 78

6.3.3.4 Residual Calculation:. .79

6.3.3.5 Boundary Conditions. .79

6.3.4 Preconditioning. .80

7 Electromagnetics 83

7.1 Physics .83

7.1.1 Assumptions. .83

7.1.2 Equations. .84

7.1.3 Boundary Conditions. .85

7.1.3.1 Magnetic driving fields.. 86

7.1.4 Interaction With Other Physics. .86

7.1.5 Material Properties. .86

7.2 Algorithms .87

7.2.1 The Whitney Complex. .87

7.2.2 Spatial Discretization. .88

7.2.3 Time Discretization. .89

7.2.4 Linear Solution. .89

8 Parallelism 91

8.1 Background on Parallel Programming. .91

8.1.1 Parallel Computer. .91

8.1.2 Shades of Grey. .92

vi TRUCHAS Physics and Algorithms LA-UR-08-0819

8.1.3 Programming for Distributed Memory Parallel Computers. 92

8.2 SPMD Programming Model. .92

8.2.1 MPI .93

8.2.2 Communication Library: PGSLib. 93

8.3 Developing Code In Truchas. .93

8.3.1 What Is Local Data, and What Is Global Data?. 94

8.3.2 Compute Locally. .95

8.3.3 Communication is Global. .95

8.3.4 Partitioning The Data. .95

8.3.5 Common Pitfalls. .96

A Discrete Operators 99

A.1 Summary .99

A.1.1 Algorithm Overview .101

B Support-Operators 105

B.1 Species Diffusion Component Support-Operators Formulation.105

B.1.1 Mixed Hybrid Formulation. .108

B.2 AUGUSTUSSupport-Operators Formulation. .108

C Linear Solution Methods 115

C.1 Direct and Stationary Iterative Methods. .116

C.2 Krylov Subspace Methods. .116

LA-UR-08-0819 TRUCHAS Physics and Algorithms vii

C.3 Multigrid Methods .117

C.4 Hybrid Methods. .118

C.5 Approximating the Preconditioning Matrix. .119

C.6 Inverting the Preconditioning Matrix. .119

C.6.1 Introduction. .119

C.6.2 Fine Grid Solver .121

C.6.2.1 Preconditioned Krylov Methods. .121

C.6.2.2 Block Jacobi: Basic Domain Decomposition.122

C.6.3 Coarse Grid Correction Scheme. .124

C.6.4 Future Work .127

D Nonlinear Solution Methods 129

D.1 Jacobian-Free Newton-Krylov Method. .129

D.2 An Accelerated Inexact Newton Method. .132

D.3 Preconditioning. .133

E Sensitivity Analysis 135

F Tensor Product Mesh Generation 139

F.1 Description of a 1-D Ratio-Zoned Mesh. .139

F.1.1 Case 1:N is Given; Findβ .140

F.1.2 Case 2:β is Given; FindN .141

F.1.3 Bounds forβ .141

viii T RUCHAS Physics and Algorithms LA-UR-08-0819

F.2 Parameterizing the 1-D Ratio-Zoned Mesh. .142

F.3 Summary .143

F.4 Specifying a Tensor Product Mesh for TRUCHAS .144

G Volume Fraction Generation 145

H Plane Truncation of Hexahedral Volumes 147

I Grid Mapping 149

I.1 Introduction .149

I.2 Theory. .150

I.3 Algorithms .152

I.3.1 Finding Intersections. .153

I.3.2 Practical Geometry Considerations. .160

I.3.2.1 Sloppiness at the Boundary. .160

I.3.2.2 Element Blocks. .160

I.3.2.3 Relaxation of Face-Connected Mesh Assumption.161

I.3.2.4 Gap Elements. .161

I.3.3 Treatment of nonplanar faces. .162

I.3.4 Computing Intersections. .163

I.3.5 Weighted Average vs. Exactly Conservative. .164

I.4 Numerical Results. .166

J Nucleation and Growth 171

LA-UR-08-0819 TRUCHAS Physics and Algorithms ix

J.1 Rappaz-Th́evoz Model with One-Way Coupling. .171

J.1.1 Nucleation Model. .171

J.1.2 Growth Model .172

J.1.3 One-Way Coupling Assumption. .172

J.1.4 Test Problem. .173

K Displacement, Sliding Interface and Contact Constraints 175

K.1 Notation .175

K.2 One normal displacement. .175

K.2.1 Preconditioning matrix. .176

K.3 Two normal displacements. .176

K.3.1 Preconditioning matrix. .177

K.4 Three normal displacements. .177

K.4.1 Preconditioning matrix. .178

K.5 One normal constraint. .178

K.5.1 Preconditioning matrix. .178

K.6 Two normal constraints. .179

K.6.1 No Contact .179

K.6.2 Contact with only one surface. .179

K.6.3 Contact with two surfaces but only one node. .180

K.6.4 Contact with two surfaces but two different nodes.181

K.6.4.1 Two surfaces, two nodes, but only one normal.181

x TRUCHAS Physics and Algorithms LA-UR-08-0819

K.6.5 Preconditioning matrix. .182

K.7 Three normal constraints. .183

K.7.1 Preconditioning matrix. .184

K.8 One normal constraint and one normal displacement. .184

K.8.1 Preconditioning matrix. .185

K.9 Two displacements, one normal constraint. .185

K.9.1 Preconditioning matrix. .186

K.10 One displacement, two normal constraints. .186

K.10.1 No Contact .187

K.10.2 Contact with only one surface. .187

K.10.3 Contact with two surfaces but only one node. .188

K.10.4 Contact with two surfaces but two different nodes.189

K.10.4.1 Two surfaces, two nodes, but only one normal.190

K.10.5 Preconditioning matrix. .190

Bibliography 191

LA-UR-08-0819 TRUCHAS Physics and Algorithms xi

xii T RUCHAS Physics and Algorithms LA-UR-08-0819

List of Tables

A.1 TRUCHASdiscrete operators.. .99

A.2 Discrete operator input/output data location.. .100

A.3 Conditions for including additional BC data in determining discrete operators.. 100

I.1 Timings for 3 hexmesh-to-tetmesh mappings on curved pipe geometry.167

LA-UR-08-0819 TRUCHAS Physics and Algorithms xiii

xiv TRUCHAS Physics and Algorithms LA-UR-08-0819

List of Figures

3.1 A logical cube truncated by a plane whose constantρ in Equation3.19is n̂ · xp, wherexp is
a point on the plane.. .28

3.2 A ruled surface is defined by four (in general nonplanar) points connected by straight lines.
the surface is parameterized byα andβ. .29

3.3 The two-fluid, one-interface problem presented to a piecewise linear volume tracking algo-
rithm. .33

3.4 Volume fractions for cells containing multiple (> 2) fluids are agglomerated for the purposes
of volume tracking their bounding interfaces.. 34

3.5 Advection of material containing an interface between two fluids.. 40

4.1 Typical specific enthalpy of an alloy as function of temperature. The enthalpy in the mushy
zone depends on the phase transformation model.. 49

4.2 Binary system with complete solubility and positive liquidus slope.. 51

4.3 Binary system with complete solubility and negative liquidus slope. 51

4.4 Binary system with eutectic. .52

6.1 Control sub-volumes and faces in a single mesh cell. 74

6.2 Control volume .74

6.3 Construction of tetrahedra for preconditioning. 80

LA-UR-08-0819 TRUCHAS Physics and Algorithms xv

C.1 4 subdomain example. .123

I.1 Hole created by planarization: Curved interface between elementsE1, E2 is replaced by
common “best fit” planeP12 and similarly for the other interfaces. This creates a hole—a
region shown by the gray area that would not be considered to be within any element. (2-D
schematic of the 3-D situation.). .164

I.2 Tet mesh on slitted curved pipe geometry showing source fieldf(x) = 1 + sin(z) 168

I.3 Hex mesh on same geometry showing mapped field withexactly conservative option.169

I.4 Hex mesh on same geometry showing mapped field withpreserve constants (weighted
average) option.. .170

xvi TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 1

Introduction

This document contains descriptions of many of the physical models and numerical algorithms in the current
release of TRUCHAS. Research and development work is continuing in all areas of physical modelling,
numerical modelling, algorithms and implementation. That research and development work is described
elsewhere, typically in research papers by the individuals doing the work.

Other documents in this series describe the input varaibles in great detail (TRUCHAS Reference Manual)
and give examples of how to use the code (TRUCHAS Users Manual).

LA-UR-08-0819 TRUCHAS Physics and Algorithms 1

2 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 2

Overview

Truchas is being developed by the Los Alamos National Laboratory (LANL) ASC sponsored TELLURIDE

project to provide an effective tool for simulating manufacturing processes. At the same time, we hope to
provide a multi-physics computational platform that will be useful for a wider range of simulations that
involve materials and/or incompressible flow with multiple fluid interfaces.

The current release of TRUCHAS emphasizes the simulation of metal casting processes as performed at
LANL, which has largely determined the models and numerical methods implemented in the code. The
models in this release of Truchas include:

• Joule heating

• Phase change

• Thermal Conduction, convection

• Radiative energy exchange

• Binary alloy phase diagram

• Alloy composition tracking

• Incompressible fluid flow

• Interface identification and motion

• Surface tension

• Chemical reactions

LA-UR-08-0819 TRUCHAS Physics and Algorithms 3

• Thermo-mechanical displacement

• Contact and gap formation

This section of the manual will briefly describe each of these models, emphasizing the reasons for the selec-
tion of capabilities and limitations as related to the principal applications of TRUCHAS. A few interesting
highlights of numerical algorithms are also described here. Later sections of this manual describe the details
of each of these models.

2.1 General Issues

Before delving into the specific physical models in TRUCHAS, it is worthwhile to describe a few general
characteristics of the code.

2.1.1 Mesh Structures

TRUCHAS follows the classical computational method of solving partial differential equations by subdivid-
ing the domain of interest into ’mesh cells’ that are treated as independent volumes described by a short
list of dependent variables associated with each ’cell’. TRUCHAS simulations may employ two overlapping
computational meshes. The electromagnetic solution is always performed on a tetrahedral mesh, while all
other solutions use an unstructured grid composed of non-orthogonal hexahedral cells. The hexahedral cells
may be used to represent polyhedra of fewer than six faces (tetrahedra, prisms, etc.)

Most TRUCHAS grids are generated by external programs and imported into the code in Exodus II format.
TRUCHAS does incorporate a simple orthogonal grid generator that can provide limited control over local
refinement in each coordinate direction. The internal grid generator is most useful for creating input for test
problems in simple geometry.

The numerical algorithms incorporated in TRUCHAS are designed to work with the range of grids described
above. Accuracy is generally best for cells that are orthogonal or nearly so. Therefore, use of a well
conditioned grid structure is strongly encouraged.

2.1.2 Time Splitting

TRUCHAS is inherently a transient solution tool. It can be used to establish steady state conditions by fol-
lowing the course of a transient from an initial guess, but this is often an expensive process. With the notable

4 TRUCHAS Physics and Algorithms LA-UR-08-0819

exception of the integration of the thermal solution with phase change, TRUCHASadvances in time by oper-
ator splitting. That is, each physics model is solved sequentially, using the state of all other physics solutions
from previous solutions of the corresponding model. The models for phase change, thermal conduction and
radiation are solved simultaneously as a coupled set of nonlinear equations, which provides a very stable
numerical bedrock for the other physics models.

2.1.3 Homogenization of Material Properties

Mesh cells frequently contain a mixture of materials in TRUCHASsimulations. Each physics model requires
values of material properties (density, thermal conductivity, etc.) for such cells. The usual method of
evaluating these in TRUCHAS is to treat the cell as a homogeneous mixture of materials, weighting the
property by either volume or mass fraction. Variations between mesh cells are explicitly permitted by the
algorithms implemented in TRUCHAS. The most significant deviation from this principal of homogenization
is the reconstruction of interface geometry in the fluid flow algorithm, as discussed in Section3.2.1.

2.1.4 Solvers

TRUCHAS makes use of three ’black box’ solvers within its numerical algorithms. The UbikSolve package
(AppendixC) is used for the solution of coupled sets of linear equations. Coupled non-linear equations
are solved by either the Jacobian Free Newton Krylov (JFNK) algorithm or an Accelerate Inexact Newton
(AIN) method (AppendixD).

2.1.5 Parallel Paradigm

TRUCHAS employs a rather crude form of parallelism. It is based on a one-time subdivision of the com-
putational mesh into partitions of groups of mesh cells. We use the Chaco program (a product of Sandia
National Laboratory) to perform this subdivision. Chaco does not account for the physical characteristics of
the various regions of the mesh, only the connectivity of the mesh.

Subsequent to this division of the mesh into partitions, TRUCHASuses the PGSLIB parallel communications
library (a product of Cambridge Power Computing Associates) to provide data from adjacent cells that may
reside on different processors. This form of parallel communication generally associates adjacent data with
a cell by transferring the data into a local array by way of an explicit call to a PGSLIB routine. This data is
then most often referenced in the normal Fortran fashion.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 5

2.1.6 Languages

TRUCHAS is primarily written in FORTRAN 90/95. The source makes substantial use of dynamic memory
allocation, the module concept, pointers, interface definitions, array operations, where constructs, and op-
tional arguments. It will fail to compile under earlier versions of FORTRAN, and in fact, it challenges many
supposedly capable FORTRAN 90/95 compilers. Check the release notes for each version of the code for a
list of tested compilers and environments.

Smaller sections of TRUCHASare written in C. Python is used extensively in some of our auxiliary programs
(particularly the output parser).

2.2 Joule Heating Model

LANL casting operations are mostly performed in vacuum because of the high chemical reactivity of the
molten metal alloys of interest. This has led to the use of electromagnetic coils to heat the mold and
metal charge by Joule (induction) heating. These coils are run at relatively low frequency (on the order
of thousands of hertz) generating fairly long wavelength electromagnetic waves that interact with the mold
and charge by inducing electric currents within their walls. These currents produce heat through resistive
heating.

The time scales associated with the electromagnetic waves are very short compared to the time needed for
the Joule heating to raise the temperature of the mold and charge. The Electromagnetic (EM) model in
TRUCHAS is therefore based on a ’snapshot’ model of the heatup process. A few cycles of the electro-
magnetic waves are simulated to produce a periodic solution of the Joule heating within the furnace. The
rate of heating is then averaged over the periodic solution to create a spatially varying heating rate that is
constant in time. The electrical properties of the furnace will change as its materials heat up, so TRUCHAS

provides the ability to automatically recalculate the EM solution based on the changes in properties. Thus,
we produce a step-wise constant heating rate that is supplied to the thermal models within the code. Power
level changes can also be specified through input to TRUCHAS. Such changes do not require recalculation
of the electromagnetic field because the field is a linear function of the driving amplitude.

The EM model uses a mimetic finite-element method to solve Maxwell’s equations within a region interior
to the heating coils, as described in detail in Section7.2. The current implementation of this method is
limited to tetrahedral grids. Automatic mapping of the cycle averaged Joule heat rate from this EM grid
to the thermal mesh (which is usually hexahedral) is included within TRUCHAS. Similarly, mapping of
electromagnetic properties from the thermal grid back to the EM tetrahedral mesh is also automatic. The
implementation of the EM model also uses quite specific boundary conditions in order to simplify the nec-
essary coding. There are plans to relax these implementation limitations in future versions of TRUCHAS.

6 TRUCHAS Physics and Algorithms LA-UR-08-0819

2.3 Phase Change and Thermal Models

The alloy charge used in LANL casting operations begins as solid, is melted by the Joule heat described
above so that it can be poured, is poured into a mold as a high temperature liquid, solidifies as it cools
through contact with the colder walls of the mold, and then undergoes a sequence of allotropic (solid-solid)
phase changes as the entire assembly cools to room temperature. Obviously, modeling phase change is
important in any simulation of the casting process. These phase changes are also complex. The temperatures
at which the phase changes occur depend on the alloy composition, which can vary as the alloy material
segregates through the metal charge. The same variables affect the range of temperatures over which the
phase change takes place. These relationships are described by the equilibrium phase diagram for the alloy.
The properties of the final casting depend critically on the microstructure of the alloy, which in turn depends
on such variables as the cooling rate through the phase change and the alloy composition.

Phase change is evidently closely linked to the distribution of heat in the system. TRUCHAS therefore jointly
solves the equations for phase change and enthalpy (which is preferred to temperature as an independent
variable in problems involving phase change). The set of linked equations is non-linear because thermal
properties (specific heat, conductivity) are often functions of temperature, and because of the latent heat that
accompanies almost all phase change processes. Within this phase of the solution TRUCHAS approximates
each mesh cell as a ’control mass’ whose composition is only changed by transformations of phase. This
results in a coupled system of equations that includes enthalpy transfer by conduction and radiation, sources
that arise from convection and Joule heating, and equilibrium relations between phases that are introduced
through a simplified phase diagram.

TRUCHAS does not represent the spatial variation of alloy concentration (coring) within material grains
because it calculates cell averaged alloy concentrations for each material. This leads to errors in simulations
that involve remelting because it is unable to resolve the time variations that occur as grains melt from the
outside inward.

The equation

∂(ρh)
∂t

= ∇ · (κ∇T (h)) + Sources (2.1)

is a good representation of the overall system of equations to be solved by the coupled algorithm. The
spatial derivatives in this equation may be evaluated by any of several discrete derivative approximations as
described in AppendixA. The Sources term in this equation represents several effects:

• Physical sources (due to chemical reactions, welding energy deposition, etc.)

• Convective enthalpy source (treated as fixed during this phase of the solution)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 7

• Specified enthalpy fluxes at the boundaries of the domain

• Radiative enthalpy fluxes (discussed in Section2.4)

TRUCHAS approaches this equation by a backward Euler time difference for which T(h) is included at the
new time level, which results in the coupled non-linear equations referred to above. The functional form of
T(h) is arbitrary and may be quite complex if the phase diagram is itself complicated. This is dealt with in
TRUCHAS by determining T(h) with a cell-by-cell iteration that relates the temperature and phase and alloy
composition of the cell to its enthalpy through the phase diagram. The iterative procedure also determines
the phase composition of each cell as a byproduct of the evaluation of the cell temperature.

The resulting set of coupled nonlinear equations is solved by either the JFNK or AIN solution procedure,
as described in more detail in AppendixD. Both these procedures are iterative in nature, resulting in nested
iterations when coupled with the iterative T(h). The advantage of this complex solution procedure is a very
stable and robust algorithm. The algorithm will work with arbitrarily large time steps, at least in principal.
In practice, we find that it is possible to choose too large a time step, which is manifested by a lack of
convergence at some level of the nest. TRUCHAS controls the time step size by a user specified Fourier
number, which informs the code of the maximum ratio between the time step selected and the time step that
would be stable for an explicit calculation. The stability of this algorithm most often results in time steps
that are limited by other numerical algorithms (flow, solid mechanics) in coupled problems. It is generally
only in problems that deal solely with the thermal solution that time step difficulties arise.

2.4 Radiative energy exchange

Radiative energy exchange plays two important roles in LANL casting processes.

1. The source from electromagnetic induction is far from uniform during the heat up phase of the pro-
cess. Conductors heat more rapidly than insulators, and parts of the system are shielded from the
electromagnetic waves by parts that are nearer the heating coils. Radiation between system com-
ponents redistributes this heat, making the temperature more uniform than would otherwise be the
case.

2. Heat must ultimately be rejected to the surrounding environment during the solidification and cool
down of system components. Transfer of energy to the environment takes place mostly by radiation
because the vacuum region inhibits convection and conduction as transfer mechanisms.

TRUCHAS includes both a simple and a complex radiative energy transfer model. Both models are able to
extrapolate the cell-centered temperature field (as calculated by T(h)) to the cell faces at which radiation is
occurring by implicitly calculating the temperature difference due to the thermal flux passing through the

8 TRUCHAS Physics and Algorithms LA-UR-08-0819

homogenized cell material. (This extrapolation is always employed by the simple model, but is optional
for the complex model.) Both models are also ’gray body’ approximations that use a single, spectrum
averaged emmisivity. The simple model calculates the enthalpy source term as exchange between the surface
temperature and a specified (possibly time varying) temperature. Use of this model usually involves multiple
groups of faces radiating to multiple specified temperatures. The simple model always uses an implicit
formulation for which the thermal fluxes are updated as part of each iteration of the nonlinear solution
described in Section2.3. The ’Source’ terms associated with this model therefore vary during the iterative
solution process.

The complex model is based on view factors that are read in by TRUCHAS. (Within the project we use
the Sandia National Laboratories Chaparral software to generate these view factors.) View factor based
radiation allows the transfer of enthalpy between surfaces within the simulation model, which is crucial to
many applications at LANL. The complex model may use either an implicit or explicit time representation,
which choice is controlled through input to TRUCHAS. If the implicit representation is chosen an additional
iterative solution of coupled equations is introduced because the face-to-face fluxes are related through a set
of linear matrix equations.

2.5 Phase Diagrams

The need for phase diagram information is discussed above Section2.3. This emperical data describes the
dependence of each phase transition on alloy composition and temperature. Microsegregation models are
necessary to properly model the changes in alloy composition that accompany phase change. Composition
is important to the evaluation of any bulk property of the resulting alloy material.

The following of types of phase diagram are available in TRUCHAS:

• Isothermal Phase Change (characteristic of pure materials)

• Non-isothermal Phase Change (an approximation for complex alloys)

• Binary Alloy Phase Change (for alloys of two materials)

• Eutectic Phase Change (for binary alloys with a eutectic)

The isothermal and non-isothermal phase change models do not treat the concentration of any alloy mate-
rials. They are useful both for pure materials, and as approximate models of alloys with complex phase
diagrams (such as ternaries).

The current TRUCHAS binary alloy phase diagram is quite simplified. The phase diagram assumes that
alloy metal concentrations are fairly low so that a linear variation in liquidus and solidus temperature with

LA-UR-08-0819 TRUCHAS Physics and Algorithms 9

concentration is acceptably accurate. An approximate Eutectic phase diagram is offered as an alternative. It
too is based on linear variations about zero concentration, but includes a Eutectic point.

Three models of alloy metal microsegregation are available:

• Lever rule (assumes infinite diffusivity in the solid phase)

• Scheil rule (assumes zero diffusivity in the solid phase)

• Clyne and Kurtz model (finite diffusivity in the solid phase)

All three of these models assume that the diffusivity in the liquid phase is effectively infinite. That is, they
assume a uniform distribution of solute within the liquid portion of each mesh cell.

2.6 Incompressible fluid flow

TRUCHAS began as a three-dimensional extension of the Ripple [1] code for incompressible fluid flow with
sharp interfaces, and it continues to be used by some for similar flow applications. Such flows are clearly
also of great interest for many material processing simulations as well. Metal casting and welding are
certainly good examples of processes that require accurate simulation of moving interfaces. These interfaces
may become topologically complex, forming drops, bubbles, waves, and intersecting interfaces typified by
breaking waves and drops impacting on pools of liquid.

Natural convection is important during cooling and solidification in both casting and welding applications.
This requires accurate treatment of density changes due to temperature and/or alloy composition, and vis-
cous shear stress, as well as the gravitational force that establishes the pressure gradient that leads to buoyant
flow. Both normal and tangential surface tension forces play important roles in welding simulation. Tur-
bulent phenomena greatly enhance the diffusion of momentum and enthalpy and must also be modeled.
TRUCHAS includes physical models for all of these phenomena.

A variety of boundary conditions are also necessary for the simulations we carry out with TRUCHAS. The
present release includes symmetry conditions, dirichlet pressure and dirichlet velocity boundaries. Although
we have a strong interest in periodic boundaries, these have not been implemented because of the difficulties
of doing so on unstructured grids.

Some applications also require that the interface model be capable of dealing with vacuum (also often termed
’void’ in the flow literature). Even processes that involve metal flow in an atmosphere require the ability to
deal with interfaces that separate fluids of vastly different densities. This large ratio of fluid densities (often
exceeding 1000:1) places strong demands on the ability of an algorithm to deal with advective processes

10 TRUCHAS Physics and Algorithms LA-UR-08-0819

that display similar ratios of advected quantities (enthalpy and momentum are both often important). Mate-
rial processing applications also often involve situations in which slight density differences due to varying
temperature or alloy material concentrations lead to buoyant flow in the context of a nominally hydrostatic
pressure field. The TRUCHASflow algorithm has been developed to incorporate accurate transient represen-
tation of all of these necessary features.

The algorithm can best be understood as three sequential steps:

• Material advection

• Velocity prediction

• Pressure solve and velocity correction

2.6.1 Material advection step

The basis of the material advection step is the Volume of Fluid (VOF) algorithm which represents the dis-
tribution of materials in the problem domain. Material fractions are assigned to each mesh cell of the grid
that reflect the instantaneous volumetric fraction of each material in the cell. These volume fractions are
accepted in the VOF algorithm as the most complete description of the material distribution. A ’reconstruc-
tion’ step becomes necessary for the purpose of evaluating a continuum picture of the material interface for
the purpose of moving material between mesh cells and determining the interface curvature for evaluating
surface tension forces. TRUCHAS uses the Piecewise Linear Interface Calculation (PLIC) [2] to reconstruct
material interfaces. There may be more than two materials in some mesh cells of the computational grid,
which leads to the necessity of distinguishing among interfaces. TRUCHAS employs the ’onion skin’ model
that treats multiple interfaces as sequential layers each layer ’on top of’ all the previous layers. Use of the
onion skin model requires an ordering of materials which TRUCHAS determines from user specified mate-
rial ’priorities’. The onion skin model reduces the multiple material problem to several simpler problems
of determining the interface between two groups of materials. PLIC approaches this simplified problem
by first determining a local normal to the interface, and then positioning the plane defined by this normal
as to conserve the material volumes on either side within the cell. (Determining this position requires an
iterative process because of the unstructured grid used in TRUCHAS.) Determination of the interface normal
is performed by a discrete approximation to the gradient of the material fractions.

Movement of the material between cells is based on combining the reconstructed geometry obtained from
the PLIC algorithm with the normal component of fluid velocities located on the faces of all mesh cells.
(Determination of these is the main objective of the other steps of the flow algorithm.) The discrete diver-
gence of these face velocities must be very nearly zero, or there may be accumulation or depletion of volume
within a mesh cell. (Minor accumulations or depletions are dealt with by small adjustments to the volumes
entering and leaving a mesh cell.) The advection algorithm first constructs a ’flux volume’ which represents
the material that moves through a cell face during the course of a time interval for every face velocity that is

LA-UR-08-0819 TRUCHAS Physics and Algorithms 11

pointing out of each cell. (The time interval may be smaller than the overall solution time step, a procedure
called ’subcycling the advection’.) The intersection of this flux volume with the internal geometry of the
cell (as determined by applying PLIC to the onion skin model) determines a volume of each material that
leaves a mesh cell. The same material volumes necessarily enter the cell into which the face velocity points.

The results of this are arrays of material volumes that are transferred from one mesh cell to each of its
neighbors in the course of a time step. These material volumes are then used to evaluate new material
volume fractions in all mesh cells, and to determine the source terms for all other conservation equations
impacted by flow (momentum and enthalpy being the main examples in TRUCHAS). The strength of this
approach is that it enforces consistency between the transfer of volume (which is proportional to mass in this
incompressible regime) and all other advected quantities. This is essential to the accurate approximation in
the presence of large density ratios.

2.6.2 Velocity prediction step

This is the first of the steps used to determine the new-time velocity field by TRUCHAS. It is based on the
fluid momentum conservation equation. The velocity prediction step updates the velocity vector located at
the centroid of every mesh cell to reflect the influence of:

• Momentum advection

• Viscous stress

• Porous medium drag

• Tangential surface tension force

Additionally, it includes an estimate of the net effect of the pressure gradient, buoyant and normal direction
surface tension forces that is based on the state at the beginning of the time step. This net effect we refer to
as the dynamic pressure gradient.

This step is performed at the cell centroid because of the difficulty of accurately determining the momentum
advection term in the unstructured mesh for problems that may include large density variations. The cell-
face based transfers of momentum derived during the advection step provide a natural evaluation of the
momentum change associated with the cell centroid.

Momentum advection and tangential surface tension are treated as explicit terms in the time advancement
of the cell centered velocity. Porous medium drag is treated implicitly because it is strictly local (affecting
only the diagonal matrix elements) and because it helps to stabilize the time advancement. The viscous
term is implemented with variable differencing. The time level of this term is determined by user input,
and may vary continuously between explicit and implicit. The implicit option permits a larger stable time

12 TRUCHAS Physics and Algorithms LA-UR-08-0819

step for many problems that are strongly influenced by viscous effects (such as flows that are driven toward
a steady condition balancing viscous and other forces). Any degree of implicitness in the viscous term
requires solution of a set of coupled linear equations because the cell centered velocities are linked through
the discrete approximations to the velocity gradient. Otherwise this step is an explicit advancement in time
on a cell-by-cell basis.

2.6.3 Pressure solve and velocity correction step

The velocity field evaluated in the prediction step suffers from two difficulties. First, the time behavior will
be unconditionally unstable because the Courant stability limit for incompressible flow is zero. Second,
the resulting velocity field does not satisfy the conservation of mass principal, which is equivalent to zero
divergence of the velocity (solenoidal field) for incompressible flow. The pressure solve and velocity update
step overcomes both of these problems by updating the approximation used in the prediction step for the
dynamic pressure gradient to one based on the pressure at the new time level.

We perform this correction first on the velocity at cell faces because we require that the face velocity field
be discretely divergence free for the upcoming advection step of the next cycle. This leads to the following
internal steps:

• Transfer the velocity field to faces

• Evaluate the change in pressure

• Update face velocities

• Update cell centered velocities

The details of these steps are described in Section3.2. For present purposes, we simply note that the second
of these steps requires formulation and solution of a set of coupled equations based on the requirement of
zero discrete divergence of the face velocities.

At the completion of the pressure solve and velocity correction step we have two manifestations of the
velocity field, a cell centered velocity field that will serve as the initial field for the prediction step of the
next time cycle, and a face field that will be used for the advection step of the next time cycle.

2.7 Surface tension

Surface tension forces play an important role in many welding processes because of the relatively small scale
of weld pools (which creates large normal surface tension components through small radius of curvature)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 13

and because of the large thermal gradients (which creates large tangential surface tension forces). TRUCHAS

employs the Continuum Surface Tension [3] for both components of surface tension. Surface tension is also
significant in many other flow problems that are characterized by small dimensions such as droplet and
bubble behavior.

The normal surface tension model calculates the interface curvature at each face of the mesh cell as the
divergence of the normal vector to the interface. The evaluation takes place at the cell faces so that the normal
component can be included in the ’dynamic pressure gradient’ term in both the predictor and projection
steps. This approach permits a much more accurate balance between surface tension and pressure gradients,
particularly at steady conditions.

The tangential surface tension force is currently evaluated only from the temperature gradient along the in-
terface. (We intend to include the influence of alloy compostion gradient as well.) This gradient is calculated
from the usual expansion of the surface tension coefficient as a power series.

Both surface tension models are time explicit. That is, they are based on the interface geometry and temper-
ature field from the previous time step. This explicit treatment leads to stability constraints on the time step
size, which are imposed by TRUCHAS at each time step.

The current release of TRUCHAS does not treat surface tension forces well near the mesh boundaries. There
is no wall adhesion (contact angle) model in the code, and the calculation of the interface normal direction is
faulty in cells that are close to mesh boundaries. We have also observed poor dynamic behavior in problems
that involve more than two materials. The next release of TRUCHAS will at least begin to address these
known issues.

2.8 Chemical Reactions

Many material processing questions include effects of chemical reactions. Some processes (such as curing)
are dominated by chemistry, while in others the chemical reactions are more of an annoyance (corrosion is
a good example). The models for chemistry that are included in this version of TRUCHAS are relatively
simple. They have been developed to deal with the curing process. TRUCHAS tracks the time evolution
of one chemical constituent converting to one other constituent only. This reaction may progress only in
one direction. The transient concentrations are determined from initial concentrations, a maximum final
concentration, two reaction constants, and assoicated powers of the concentration, as described inChapter
5. Energy that is released (or absorbed) by the reaction is treated as an explicit source term in the enthalpy
conservation equation.

14 TRUCHAS Physics and Algorithms LA-UR-08-0819

2.9 Solid Mechanics

The response of solid materials to stresses that are induced by thermal transients and gradients are quite
important during casting and welding operations. Volume changes due to allotropic phase change can also
induce stress and strain in solid bodies. These same effects are also critical to the determination of distortion
and residual stresses in the final product of these processes.

An important example of the role played by solid strains in casting operations is the creation and healing
of gaps between the pieces from which the mold is assembled, as well as gaps between the mold sections
and the solidified metal part. These gaps can have pronounced effects on the path and rate at which heat is
removed from the metal, and thereby influence its microstructure as well.

The current TRUCHAS release can calculate displacements, elastic stresses and both elastic and plastic
strains for an isotropic material, including stresses and deformations caused by temperature changes and
gradients. The volume changes associated with solid state phase changes can also be included in the solu-
tion. A variety of traction and displacement boundary conditions can be specified, and this release includes
sliding interfaces and contact, restricted to “small” displacements. The model for plastic flow uses a flow
stress that depends on strain rate and temperature with no work hardening. Other material behavior such as
porosity formation may be added in future versions of the software.

Small displacement sliding interfaces can be specified, with or without a contact algorithm. The interface
is defined with gap elements, that are currently constructed by duplicating mesh nodes and element faces
on a surface and constructing elements of zero thickness by connecting the coincident faces and nodes in
the mesh definition. In the future, elements of finite thickness may be designated as gap elements. The gap
elements are currently only used to provide connectivity information to the sliding and contact algorithms,
facilitating the parallel implementation.

Sliding interfaces specified without contact (designated “normal constraint” interfaces) allow coincident
nodes across an interface to move relative to each other tangential to the surface but not normal to the
surface. This is implemented by treating the nodes on the interface as if they are on a free surface and
adding constraints that are dependent on the displacement vector of the coincident node on the other side of
the interface.

The discretization method used to solve the equilibrium stress equations is based on a node-centered control
volume discretization [4, 5]. This algorithm was chosen because it allows the efficient use of the existing
mesh data structures and parallel gather-scatter routines. Control volumes are constructed for each node or
cell vertex using data from the mesh for fluid flow and heat transfer. Each cell is decomposed into sub-
volumes with faces defined by connecting cell centroids, face centroids and edge midpoints as described
in Section6.3. The same section describes the use of finite-element techniques to evaluate the strains
required for the equilibrium stress equation. The breakup of the TRUCHAS nominal mesh into sub-cells
results in a substantial increase in the degrees of freedom in the solid mechanics solution as compared to the

LA-UR-08-0819 TRUCHAS Physics and Algorithms 15

other physics algorithms that employ this mesh. This leads to large increases in both the dynamic memory
requirements and disk space required for simulations that use this model. This may require the use of fewer
mesh cells in the basic mesh on computers with limited memory or disk space.

16 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 3

Fluid Dynamics

The following chapter presents the flow algorithm incorporated into TRUCHAS. The algorithm solves equa-
tions of conservation of mass and momentum for any number of immiscible, incompressible fluids, and
tracks the interfaces between them. The algorithm has been specially designed to compute accurate solu-
tions for high density ratio flows (e.g.103 to 104), as occur when water or molten metal flows within an
atmospheric air environment.

The algorithm will also accommodate the presence of void (a zero density, infinitely compressible material),
as an alternative to venting a light incompressible fluid. The code has been written to model flow past
arbitrarily-placed solid material (e.g. mold), as well as solidifying material, whether this manifests itself as
a well-defined interface due to pure material phase change, or as an extended mushy-zone region due to
alloy solidification.

Finally, the flow section of TRUCHAS is responsible for evaluating the advection of both enthalpy and solute
concentrations. The heat-transfer/phase-change section evaluates conduction and the sources/sinks of solute.

3.1 Physics

3.1.1 Assumptions and Approximations

The assumptions and approximations made by TRUCHAS for fluid flow fall into three categories: basic
assumptions, useful approximations, and calculation-specific assumptions.

Basic assumptions are fundamental to the way in which TRUCHAS handles flow. Removal of basic assump-

LA-UR-08-0819 TRUCHAS Physics and Algorithms 17

tions would require completely rewriting the flow algorithm. These include:

The continuum hypothesis: molecular behavior is averaged over small spatial and temporal
regions.

Mixture velocity field: TRUCHAS assumes that a single velocity field can be used to describe
the flow of all fluids at any point in space. Therefore, boundary layers between fluids must
either be ignored, or resolved by the computational mesh. Because boundary layers are often of
small dimensions compared to the overall domain of computations, the latter approach is rarely
possible.

Incompressibility: the density of any fluid is independent of pressure.

Limited domain: it is assumed that boundary and initial conditions can be defined that limit
the domain of the calculation in space and time.

Useful approximations simplify the equations solved by TRUCHAS. Some of these may be relaxed in the
future. Their removal would affect only parts of the flow program, and would not require rewriting the entire
algorithm. These include:

Property averaging: the properties of mixed fluids are calculated by either volume or mass
averaging the individual material properties within each computational cell. Thus, for example,
chemical reactions are not treated in the flow solution.

Boussinesq approximation: the density of fluids is permitted to vary with both temperature
and solute concentration within TRUCHAS. These density variations only appear as a buoyant
force in the flow equations. The usual Boussinesq method is extended to permit polynomial
variations, rather than only linear terms.

Constant specific volumes:this is really another statement of the Boussinesq approximation.
TRUCHAS ignores the effects of liquids and solids changing their volumes, even in situations
involving phase change.

Turbulent flow: viscous stress is calculated from the averaged molecular viscosity, plus a
turbulent viscosity based on an algebraic turbulence model.

Newtonian fluids: viscous stress is assumed to be a linear function of the shear rate.

Void regions: void regions are idealizations of regions with zero density. Therefore, the pres-
sure is uniform throughout each void, and the void can be compressed without effect.

Volume tracking: consistent with the Boussinesq approximation, we track the fractional vol-
ume of each material throughout the mesh, not its mass. The tracking algorithm can employ
partial time steps to reduce flux errors which we refer to as ’sub-cycling’ but remains first order
in time. Momentum and energy are advected with volume.

Energy transformation: fluid kinetic energy is not converted into internal energy within
TRUCHAS. Therefore, internal energy is conserved, not total energy.

18 TRUCHAS Physics and Algorithms LA-UR-08-0819

Momentum advection: a first order scheme is used to advect momentum. The scheme uses
old-time velocity values, but densities that reflect updated material volume fractions.

Spatial and temporal discretization: a semi-implicit time scheme is used in which the pres-
sure gradient is treated implicitly, and all other forces are treated explicitly. This produces a
stable, but first order accurate temporal solution. Spatial derivatives on the unstructured grid
are evaluated via a first-order least-squares approximation.

Boundary conditions: boundary conditions are generally enforced via the least-squares spatial
discretization scheme. This does not enforce rigorous imposition of the requested conditions.
The normal component of Dirichlet velocity condition is an exception to this. This component
is rigorously imposed, yielding correct volumetric flow rates through the boundary.

Calculation-specific approximations are of two sorts. The first results from the specification of input vari-
ables. For example, fluid density for one or more fluids can be specified to be independent of temperature
and solute concentration. There are many examples of this type of assumption, which are best understood
by examining theFLOW AND FILLINGchapter of theUser Manual .

Other calculation-specific assumptions result from the finite resolution of any calculation. If sufficient reso-
lution is used, the impact of these assumptions lessens. They include:

Geometry initialization: the initial volume occupied by materials within mesh cells is eval-
uated through a Monte Carlo method that results in statistical errors. Material interfaces that
coincide with the mesh structure are not subject to this error.

Interface geometry: the location and orientation of fluid-fluid and fluid-solid interfaces within
mesh cells are reconstructed from material volume fractions alone. This introduces errors that
shrink as resolution improves.

Multiple interfaces: cells that contain more than two materials impose additional uncertainty
on the interface geometry.

3.1.2 Equations

The flow algorithm solves equations of conservation of mass and momentum:

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

∂(ρu)
∂t

+∇ · (ρuu) = −∇p +∇ · τ̃ + fB + fS + fD (3.2)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 19

u represents velocity,ρ density,p pressure,̃τ the shear stress tensor,fB any body forces, andfS any surface
forces.fD is a drag force used to describe flow in the presence of a diffuse solid boundary.

As we assume fluids to be Newtonian:

τ̃ = µ(∇u +∇Tu) (3.3)

whereµ represents the dynamic viscosity. If the flow is turbulent, then the dependent variables (velocity
vector and pressure) in Equation3.2are considered ensemble-averaged quantities, i.e., mean quantities after
the corresponding fluctuating components (due to turbulence) have been averaged out. The effects of the
velocity fluctuations are captured in the turbulent or Reynolds stress tensor, which must be modeled to close
the set of equations. Following Boussinesq’s hypothesis, we model this turbulent stress as proportional to
the velocity gradients like its molecular counterpart, i.e.,

τ̃t = µt(∇u +∇Tu) (3.4)

The total, effective stress is then given as

τ̃eff = τ̃ + τ̃t = µeff (∇u +∇Tu) (3.5)

where

µeff = µ + µt (3.6)

We use a simple algebraic model to calculate the turbulent viscosity. The model assumes that the turbulent
diffusivity (or kinematic viscosity),νt, is proportional to the product of a velocity scale and a length scale:

νt ≡
µt

ρ
= cµu′` (3.7)

whereu′ and` are the turbulent velocity and length scales, respectively, andcµ is a proportionality constant
that has a value of 0.05. The turbulent length scale represents the size of the eddies, which generally varies
throughout the domain. We take the approximation of assuming that` is constant in a problem, with a value
specified via code input (e.g., half the dimension of a representative region in a mold cavity). The velocity
scale is related to the local turbulent kinetic energy per unit mass,k, which is modeled as a fraction of the
mean kinetic energy because in mold filling problems, turbulence is largely derived from the mean flow:

u′ =
√

k (3.8)

k = f · 1
2
· u · u (3.9)

Though not true in general, we assume the fractionf to be constant at 0.1 throughout the problem. This
default value of the ratio between turbulent and mean kinetic energies may be changed via input.

20 TRUCHAS Physics and Algorithms LA-UR-08-0819

The only surface forcefS that we consider is surface tension, which is modeled as a volumetric force acting
on fluid in the vicinity of surfacesS:

fS = (σκn̂S +∇Sσ)δS (3.10)

σ is the surface tension coefficient,κ the total curvature of an interface,n̂S a unit normal toS, ∇S is the
surface gradient andδS the Dirac delta function.

Although individual fluids are incompressible, we consider multiple immiscible fluids (of different densities)
within a domain, and so retainρ within the bracketed terms on the LHS of Equation3.2. However, as the
density of any fluid particle remains constant,

Dρ

Dt
= 0 (3.11)

and so:

∇ · u = 0 (3.12)

Equation3.2, then, is an Eulerian expression of conservation of fluid momentum, subject to the incompress-
ibility constraint embodied by Equation3.12. Equation3.1 describes the transport of density, or put more
simply, the transport of different fluids within the domain.

3.1.3 Initial & Boundary Conditions

A variety of initial and boundary conditions are currently implemented in TRUCHAS, and more will be added
in the near future.

Every computational cell in the mesh is automatically provided with initial conditions as specified in the
BODYnamelist inputs. Each such namelist describes a region of space (as described in theBODYsection
of the Reference Manual) and provides initial conditions within that region. (Alternatively, there are
user modifiableOVERWRITEroutines that can be used to impose more general initial conditions.) The
initial conditions used by the flow algorithm are: material composition, temperature, velocity and solute
concentration. TRUCHAS evaluates cell values of the fluid velocity, enthalpy, density, viscosity and surface
tension from the values specified by allBODYnamelists.

Because the geometric regions specified in the namelist may not coincide with the computational grid,
TRUCHAS uses a Monte Carlo algorithm to estimate cell values. A sequence of test points are generated for
each mesh cell in a pseudo-random fashion, and each point is geometrically assigned to aBODYnamelist
(which may be theBACKGROUND). The cell values are estimated by the assuming that the volumetric frac-
tion of the cell occupied by eachBODYis equal to the fraction of the random points that fall within theBODY
geometry.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 21

Boundary conditions are evaluated by TRUCHASat every external face of the mesh. In some cases, boundary
conditions can also be imposed in the mesh interior. Conditions are specified by the user through BC
namelists. Each namelist specifies a region of space, a boundary condition type and a boundary condition
variable, and may specify value(s) for the variable. TRUCHAS determines the cell faces that fall within the
spatial extent of the namelist and creates data structures that are used to impose the desired conditions within
the solution.

In the case of fluid flow, the currently available boundary variables are fluid velocity and pressure. At
solid surfaces and mesh boundaries, no-slip and free-slip velocity conditions can be specified. At mesh
boundaries, Dirichlet values may be specified for either pressure or velocity.

Future additions to TRUCHAS will implement a wider variety of flow boundaries, including Neumann,
periodic, symmetric and hydrostatic conditions.

3.1.4 Interaction With Other Physics

The principal interactions of the flow solution are with the heat transfer / phase change solution. The
flow solution evaluates the redistribution of materials, enthalpy and species concentration due to advection
effects. These changes are passed on to the heat transfer / phase change solution. The heat transfer /
phase change solution evaluates material changes due to phase change, and temperature variations due to all
phenomena. These in turn affect the flow solution through the material properties of the fluids.

Additional interactions will be implemented in the near future. These include Lorentz forces on the fluid
due to electromagnetic effects, volumetric changes resulting from density variations that occur with phase
change, and displacement volumetric changes evaluated by the themomechanical solution.

3.1.5 Material Properties

The following are material properties associated with the solution of a flow field:

Density: (required) for each material, a densityρ must be specified, that may vary as a function
of temperature or temperature plus solute concentration.

Viscosity: (optional) if viscous effects are to be modeled, then a dynamic viscosityµ must be
specified for each material, that can vary as a function of temperature or temperature plus solute
concentration.

Surface tension:(optional) if surface tension effects are to be modeled, then a surface tension
coefficientσ must be specified for each pair of fluids that may come in contact.σ can be
specified as a function of temperature.

22 TRUCHAS Physics and Algorithms LA-UR-08-0819

3.2 Algorithms

The solution of the equations presented in Section3.1.2proceeds in a sequence of steps.

The distribution of materials throughout the

mesh is considered first by solving several finite volume analogs of Equation3.1. TRUCHAS employs the
multidimensional PLIC (piecewise linear interface calculation [2]) method to evaluate the volume fraction
of every fluid material in every mesh cell. (Note that the current coupling with the phase change model
is explicit, that is, the conversion of liquid materials to/from the corresponding solid materials takes place
in the enthalpy solution after the flow solution is complete.) Section3.2.1describes the volume fraction
solution in more detail.

This first step produces not only new values of the volume fractions, but also volume transfers between pairs
of cells sharing a face. These volume transfers are used to evaluate the transport of all other quantities to
ensure consistency among the various transport equations. Therefore, enthalpy changes and species changes
are also derived from the volume transfer data.

Next, the new volume fractions are used to evaluate fluid properties in every mesh cell. The fluid density
and viscosity are evaluated as volume averages of the fluid materials within the cell. (The value of each
material’s density and viscosity can also depend on the material temperature and species concentrations, as
discussed in Section3.2.4)

Once TRUCHAS has determined fluid properties for every mesh cell, it proceeds to the evaluation of new
velocity and pressure fields. This evaluation itself is divided into 4 steps:

1. Approximate the new-time cell-centered velocities by a forward Euler step in time, using known val-
ues to evaluate momentum advection and the surface tension. These known values are a combination
of previous time step values (velocity, temperature, and species concentrations) and material volume
fractions and material transfers from the volume tracking step. This “predictor” step also incorpo-
rates explicit approximations to the body force and the pressure gradient. These approximations are
updated in step 3. Viscous and drag forces are treated more implicitly during this step to enhance
stability. Drag forces (which are diagonal terms in the equations) are proportional to the predicted
velocity components. Viscous forces are averaged between the previous time step solution and the
predicted components (based on a user specified parameter). This imposes a requirement for solving
a linear system of equations in most calculations.

2. Evaluate velocities on the cell faces from these cell centered values, and then apply body force accel-
erations. A “Rhie-Chow” [6] correction is applied during this step to eliminate “checkerboard” spatial
oscillations.

3. Project the face velocity field onto a solenoidal field by solving for the change in the pressure field

LA-UR-08-0819 TRUCHAS Physics and Algorithms 23

that eliminates the velocity divergence in every mesh cell.

4. Update the cell-centered velocity field by averaging the face-centered gradients of the change in the
pressure field that were evaluated in step 3.

Completion of these steps results in velocity and pressure fields that are fully updated using the forward
Euler time step.

The subsections below provide additional details on each of the above steps.

3.2.1 Interface Kinematics

Computational simulations of the mold filling portion of a casting process demand an accurate and robust
algorithm for tracking the molten metal free surface. Many candidate algorithms are available today, and
many more are likely to be devised; see [7,8] for reviews. The requirements list we impose upon an interface
tracking algorithm optimal for mold filling simulations is long and formidable. We seek an algorithm that:

• is globallyand locally mass conservative;

• maintains at least second order accuracy in time and space;

• maintains compact interface discontinuity width;

• is topologically robust;

• is amenable to three-dimensions;

• is amenable to general unstructured meshes;

• can accommodate additional interfacial physics models;

• can track interfaces bounding more than two materials;

• is computationally efficient;

• can be implemented by novices; and

• can be readily maintained, improved, and extended.

We have expended considerable time and effort in quantitatively comparing most popular candidate algo-
rithms in 2-D [9]. While equivalent 3-D comparison studies have yet been undertaken, we currently conclude
that a clear interface tracking algorithm “winner” is not apparent at this time. Each algorithm has readily

24 TRUCHAS Physics and Algorithms LA-UR-08-0819

identifiable strengths and weaknesses, which, if understood and quantified, could result in a hybrid, unified
algorithm possessing the strengths of many different algorithms.

To date we have embraced volume tracking algorithms, where we have found them useful on 2-D struc-
tured [10] and unstructured [11] meshes as well as 3-D structured meshes [12]. We have devised and
implemented volume tracking algorithms which reconstruct piecewise linear (planar) fluid interfaces from
discrete fluid volume data. If the piecewise linear interface reconstruction geometry is linearity-preserving,
i.e., reconstructs planar interfaces exactly, then we declare the algorithm to be spatially second order. By
detailing the algorithm’s extension to 3-D unstructured meshes in the following, the first seven requirements
previously listed have at least been addressed (although not adequately); work remains before the remaining
four requirements can be addressed, and focused analysis is needed on all requirements before victory can
be declared. Volume tracking has been our choice to date because other algorithms have fallen short in
satisfying some of the more important requirements such as topological robustness and the maintenance of
local conservation and compact interface width.

3.2.1.1 Representing the Interface with Volume Fractions.

We solve Equation3.1 for ρn+1 usingun
f . We begin by defining a volume fractionfk as the fraction of a

cell volumeV occupied by fluidk:

fk = Vk/V (3.13)

A cell density is related to the volume fractions via:

ρ =
∑

fkρk (3.14)

and Equation3.1may then be written as:

∂(fkρk)
∂t

+∇ · (fkρku) = 0 (3.15)

Since eachρk is constant, we obtain an evolution equation for thefk:

∂fk

∂t
+∇ · (fku) = 0 (3.16)

Our volume tracking algorithm seeks discrete numerical solutions to

∂fk

∂t
+ u · ∇fk = −fk∇ · u = 0 , (3.17)

whereu is the flow velocity andfk is the volume fraction of materialk. (The final equality only holds in
fluid regions that include no “void” material as described below, because the velocity field is not required to

LA-UR-08-0819 TRUCHAS Physics and Algorithms 25

be solenoidal in the vicinity of void.) Here we invoke a one-field approximation, as derived in [8]. Sincefk

delineates the presence (or absence) of each fluid,fk serves as a Heaviside functionH for each materialk.
Equation3.17is therefore an evolution equation for the location of each fluid, with the volume fractionsfk

discretely approximatingH. The volume fractionsfk are bounded by0 ≤ fk ≤ 1, where

fk =


1, inside fluid k ;

> 0, < 1, at the fluid k interface ;
0, outside fluid k .

(3.18)

Since fluid volumes are volume-filling, volume fractions must sum to unity,
∑

k fk = 1, throughout the
domain. In seeking solutions to Equation3.17, fluid volumesare marched forward in time as solutions to
the volume integral of Equation3.17[10].

3.2.1.2 An Overview of the Volume Tracking Algorithm.

We utilize a multidimensional PLIC (piecewise linear interface calculation [2]) volume tracking algorithm
for unstructured meshes [13] to solve Equation3.16for fn+1

k . The algorithm consists of two steps: a planar
reconstruction of fluid-fluid interfaces within a cell, corresponding exactly to thefn

k and to estimates of the
orientations of the interfaces (evaluated as gradients of thefn

k); and then a geometric calculation of volume
fluxes of different materials across cell faces. Multiplying these fluxes by∆t provides the volume of each
material crossing every face, which is used to update the volume fraction in every cell, and later for transport
of other quantities. It is crucial that the transport of each quantity be evaluated from the volume change of
each material and not from the average quantity and total volume change.

TRUCHAS allows the use of multiple passes through the volume tracking algorithm within a time step. Sub-
cycling improves the accuracy of the solution, and permits transfer of material through more than a single
cell during a time step. This can be quite important in regions where the interface travels at an angle to mesh
cell faces. Refer to theCAVEATSchapter of theUser Manual for a discussion about the limitations of
sub-cycling.

Key differentiating aspects of a given volume tracking algorithm include the temporal integration scheme
and the accuracy with which fluid truncation volumes at control volume faces are estimated. Truncation
volumes follow from a required reconstructed interface geometry assumption. For this work, we fit the fluid
volume data to a reconstructed interface whose geometry is piecewise linear (planar), given by the equation

n̂ · x− ρ = 0 , (3.19)

wherex is a point on the plane andρ is the plane constant. This approximation is a good one if the radius of
curvature of the interface is at least two to three times the characteristic mesh spacing.

We now summarize our volume tracking algorithm template:

26 TRUCHAS Physics and Algorithms LA-UR-08-0819

1. Estimate the interface topology from discretefk data. For piecewise linear schemes, this requires an
estimation for the interface normaln̂.

2. Reconstruct the interface in each cell by locating the interface surface within the cell in a volume
conservative manner. For piecewise linear schemes, this requires finding the plane constantρ in
Equation3.19.

3. Define the flux volume boundaries at each control volume face.

4. Compute the fluid volume truncated by the interface surface within each flux volume (Vtr).

Various methods for accurate estimation of the interface normaln̂ can be found in [12,14]; in the following
we detail howVtr can be computed exactly within volumes bounded by logical hexahedra typical of most
unstructured meshes.

3.2.1.3 Estimating the Interface Normal.

The algorithms used for estimating the interface normaln̂ from discrete materialk volume fractionfk data
are discussed in Section3.2.3.

3.2.1.4 Locating the Interface.

Let the truncation volumeVtr be the volume of the portion of the interior of the hexahedron behind the
interface planep. We solve the following two problems iteratively until the truncation volumeVtr converges
to Vk

• thedirect problem: given the cell,ρ, andn̂, find Vtr; and

• the inverseproblem: given the cell,̂n, andVtr, find ρ.

The truncation volume is given by

Vtr =
∫

v
1 dτ =

1
3

∫
v
∇ · (x− n̂ρ) dτ(x)

=
1
3

[6∑
f=1

∫
tr

(x− n̂ρ) · dSf (x) +
∫

tr
(x− n̂ρ) · dSp(x)

]
, (3.20)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 27

wheredτ is an element of volume,dSf is a vector element of surface on cell facef , anddSp is a vector
element of surface on the truncating plane. The surface integrations above are confined to the portions of
the surfaces behind the plane (tr), and thedSf elements point along the outward normals on eachSf . In
Equation3.20, sincedSp = n̂|Sp|, then(x− n̂ρ) · n̂ = 0, hence

Vtr =
6∑

f=1

Vf , where 3Vf =
∫

tr
(x− n̂ρ) · dSf (x) . (3.21)

Hence, to computeVtr, we consider each truncated facef separately.

In performing the surface integrals above, we first define the properties of each control volume, which is a
computational cell characterized as alogical cubehaving eight vertices, twelve edges, and six faces; vertex
positions arbitrary; edges that are straight lines; and faces that are ruled surfaces. Note that this definition
easily allows the cellin physical spaceto be a tetrahedron, prism, pyramid, or hexahedron, since any of the
eight vertex physical coordinates can coincide.

r

r

r

r
r

r

r

r

�
�

�

�
�

�

�
�

�

�
�

�

1

23

4

5

67

8

B
B

B
BB

r
r�����������r

��������r���
�
��

A
A
A
AAU

q
n̂

xp

Figure 3.1: A logical cube truncated by a plane whose constantρ in Equation3.19is n̂ · xp, wherexp is a
point on the plane.

Before defining a ruled surface, consider the following definitions for the four-vertex cell face shown in
Figure3.2. Let the four vertices of a face be labeledx1, x2, x3, andx4, ordered counterclockwise, with the
outside of the face above the plane of the paper, as shown in Figure3.2.

The lines(x1, x3) and(x2, x4) are therefore diagonal pairs. The successor vertex,x′i, is defined as the vertex
next to and ahead ofxi in the counterclockwise rotation, i.e.,x′1 = x2, x′2 = x3, x′3 = x4, andx′4 = x1.
Similarly, the double-successor vertex,x′′i , is the diagonal partner vertex, and the triple-successor vertex,
x′′′i , is the predecessor vertex, i.e.,x′′′1 = x4.

Several vectors and scalars associated with a ruled surface can be defined. First, a deviation vectorB is
given by

B = x1 − x2 + x3 − x4 , (3.22)

28 TRUCHAS Physics and Algorithms LA-UR-08-0819

�����������

r���
�
�
�
�
�
�
rXXXXXX r

A
A
A
AAr

1

2

3
4

β

α�����:
�
�
�
���

Figure 3.2: A ruled surface is defined by four (in general nonplanar) points connected by straight lines. the
surface is parameterized byα andβ.

henceB = 0 only if the face is a parallelogram. When|B| 6= 0, then|B|measures the deviation of the ruled
surface from the parallelogram configuration. Next, the vectork, given by

k = (x3 − x1)× (x4 − x2) , (3.23)

possesses a magnitude which is twice the face area if the facexi lie in a plane. The area of the ruled surface
in Figure3.2 is also|k|/2, independentof whether the fourxi lie in a plane. A volumevtet, given by

vtet = (x1 − x2)× (x2 − x3) · (x3 − x4) , (3.24)

is six times the volume of the tetrahedron formed by the fourxi in Figure3.2. This volume is zero only if
the fourxi lie in a plane. The cross-vectorsXi are defined by

Xi = (x′′′i − xi)× (xi − x′i) , (3.25)

e.g.,X1 = (x4 − x1)× (x1 − x2). The cross-vector magnitude is twice the area of the surface bounded the
three vertices in its definition. We also define the signsεi, 1 ≤ i ≤ 4 asε1 = ε3 = +1 andε2 = ε4 = −1.
Given the definitions above, we see that2vtet = B · k, and, if|B| = 0, thenX1 = X2 = X3 = X4.

Let α andβ in Figure3.2be parametric variables with ranges0 ≤ α ≤ 1, 0 ≤ β ≤ 1. Then(1−α)x1−αx2

and(1− α)x4 − αx3 are points on the lines(x1, x2) and(x4, x3), respectively. Given this relationship, one
can write an expression for any pointx on a ruled surface as

x = x1 + α(x2 − x1) + β(x4 − x1) + αβB . (3.26)

If the face is planar, thenx is a point inside the quadrilateral, but, more generally,x(α, β) given by Equa-
tion 3.26 is a 2-D surface segment of 3-D space whose borders are the straight lines(x1, x2), (x2, x3),
(x3, x4), and (x4, x1). Through any point(α0, β0) on this surface, there are two straight lines, namely
x(α0, β), 0 ≤ β ≤ 1, andx(α, β0), 0 ≤ α ≤ 1, through it which lie entirely on the surface. Thus it is

LA-UR-08-0819 TRUCHAS Physics and Algorithms 29

called aruled surface. The ruled surface can, under suitable translation and rotation of coordinates, also be
considered a parabolic hyperboloid whose surface area is the minimum area that can be passed through its
four straight lines.

The ruled surface elementdS is given by

dS =
[
X1 + α(X3 − X4) + β(X3 − X2)

]
dαdβ . (3.27)

IntegratingdSover the ruled surface, on obtains:∫ 1

0
dα

∫ 1

0
dβ
[
X1 + α(X3 − X4) + β(X3 − X2)

]
=

1
2

k (3.28)

The trace of the ruled surface on the truncating plane given by Equation3.19is a hyperbola on that plane,
and the trace of the truncating plane on the ruled surface is a hyperbola on the(α, β) surface.

Let µi = n̂·xi, wherei denotes any of the four vertices on the ruled surface. Further, defineρi = min(ρ, µi),
henceρ − ρi = 0 if xi is in front of the plane, otherwiseρ − ρi = µi. Let thexi be relabeledxa, xb, xc,
andxd and setµa = n̂ · xa, µb = n̂ · xb, µc = n̂ · xc, andµd = n̂ · xd according to the convention that:
µa ≤ µb ≤ µc ≤ µd. Given this convention, then, as the plane moves with increasingρ from ρ = −∞
to ρ = ∞, xa is the first vertex passed, thenxb, xc, andxd are successively passed. Successor vertices will
also be denoteda′, a′′, so thata′′ = a + 2. With this notation, all possible plane/ruled surface truncation
alternatives divide into six unique cases forVf :

Case 0: ρ ≤ all µi, thenVf = 0;

Case 1: µa < ρ ≤ µb, thenVf has only one truncated corner;

Case 2: µa ≤ µb < ρ < µc ≤ µd andb 6= a + 2;

Case 3: µc ≤ ρ < µd, then only one corner has not been truncated;

Case 4: µd ≤ ρ (Vf = Vftot);

Case 5: µb < ρ < µc andb = a + 2, whichcanoccur for “bow-tied” surfaces.

Given the integral,Knm, defined as

Knm =
∫

tr
αnβm dα dβ , (3.29)

thenVf can be expressed as

30 TRUCHAS Physics and Algorithms LA-UR-08-0819

3Vf = (x1 − n̂ρ) ·
[
X1K00 + (X3 − X4)K10

+(X3 − X2)K01

]
− vtetK11 . (3.30)

Upon analytically performing theK integrals, a general expression forVf follows:

Vf =
1
6

∑
i

εiYi
(ρ− ρi)2

λi
+

vtet

2

∑
i

εi

[
J1(wi)− 2J2(wi) + J3(wi)

](ρ− ρi)4

λ2
i

, (3.31)

where

Yi = (x′′′i − n̂ρ) · (xi − n̂ρ)× (x′i − n̂ρ) ;
λi = εi(µi − µ′i)(µi − µ′′′i) ;

wi =
ν

λi
(ρ− ρi) , where ν = n̂ · B ; (3.32)

and

J1(w)− 2J2(w) + J3(w) = 2
∞∑

n=0

(−w)n

(n + 2)(n + 3)(n + 4)
. (3.33)

If w is large, i.e.,w > 10−2, we computeJ0 andJ1, J2, J3 successively by recursion. But ifw is small, i.e.,
w ≤ 10−2, then compute according to the power series in Equation3.33.

The expression forVf in Equation3.31is quite general, being appropriate for cases 1, 3, and 5 mentioned
previously. Cases 0 and 4 are trivial, but Equation3.31may break down for case 2 because one of theλ’s in
the denominator can vanish. In this case, the terms in Equation3.31need to be rearranged.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 31

It is useful to defineVftot, which is our case 4, where all four vertices are behind the interface plane, i.e.,
all µi ≤ ρ. Using Equation3.30, and integrating over the entire ruled surface, which yieldsK00 = 1,
K01 = K10 = 1/2 andK11 = 1/4, gives:

Vftot =
1
2
(
xcm − n̂ρ

)
· k , xcm =

x1 + x2 + x3 + x4

4
. (3.34)

3.2.1.5 Representing Interfaces Bounding More Than Two Fluids.

Almost two decades ago a simple “onion skin” [15] model was proposed as an means for volume tracking
algorithms to represent multiple (> 2) immiscible fluids residing within a single cell. In this instance,
the algorithm must accommodate for the reconstruction of more than one interface bounding different sets
of fluids within a given cell. Given an adequately-resolved computational domain tasked to represent all
interfaces bounding each ofn immiscible fluids present in the domain, a surprisingly frequent occurrence is
indeed this situation, namely more than two distinct fluids entering a single cell.

The presence of any cells containing more than two fluids is arguably a good criterion for “under resolution”,
i.e., further mesh refinement of the domain is warranted before the simulation should be continued, because
an adequate interface representation could not possibly result otherwise. Consider, however, a simple three-
fluid simulation where all three fluids are initially separated from one of the other fluids (i.e., interfaces
bounding fluids one-two and two-three are initially present). As the simulation progresses, however, and the
fluids begin to move in response to applied dynamics, it is certainly plausible that a fluid one-three interface
might arise and even come in contact with a one-two interface and a two-three interface. The prototypical
example is of course a triple point between these three fluids. For a complex topology simulation, it is also
likely that this triple point does not align with cell boundaries, hence a volume tracking algorithm must
therefore be able to accommodate this occurrence (> 2 fluids in a cell) in some way.

Two basic algorithmic approaches can be taken: (1) abandon the immiscibility assumptions (that fluids are
separated by distinct interfaces), hence do not attempt to further volume track the interfaces, but instead
transition over to a “homogeneous mix” model; or (2) maintain the immiscibility assumptions and continue
to volume track the interfaces by breaking down the multiple interface (more than one per cell) problem into
a series of two-fluid, one-interface problems. For approach (1), a homogeneous mix of two or more fluids
within a given cell refers to the situation where the fluids are intimately mixed with a characteristic interfacial
length scale (e.g., local radius of curvature) that is sufficiently smaller than a length scale resolvable by the
cell size. Such homogeneous mix will (and does) occur, and the formulation of plausible models meant
to capture this phenomenon is quite possible, but such a model does not yet exist in TRUCHAS. Instead,
approach (2) is currently supported, which is virtually identical to the 1982 approach published by David
Youngs in his classic volume tracking article [15]. The Youngs’ onion skin algorithm discussed below has
undergone evolutionary developments by Mosso and others since 1982, but these developments have not yet
been (and should be) incorporated in the current algorithm. The basic Youngs approach is outlined below,
with some concluding remarks on how (and where) the algorithm can be problematic and further improved,
including the transition to a homogeneous mix model.

32 TRUCHAS Physics and Algorithms LA-UR-08-0819

The basic premise is that a volume tracking representation is always reducible to a two-fluid, one-interface
problem given by a distribution of volume fraction datafag, wherefag is theagglomeratedvolume fraction,
constructed by summing volume fractions in a specificpriority order:

fag(i) =
i∑

p=1

fk(p) , (3.35)

wherei is the interface currently being constructed (1, 2, etc.),p the priority number, andk(p) is a mapping
of priority number to fluid identification (typically a number). Figure3.3displays the generic problem (in 2-
D) for defining and locating a piecewise linear interface in a cell containing two fluids, namely wherefag(i)

Figure 3.3: A volume tracking representation is always reducible to a two-fluid, one-interface problem given
by a distribution ofagglomeratedvolume fraction datafag separated by an interfacei having a unit normal
n̂(i) = ∇fag(i).

is the volume fraction data on one side of interfacei having unit normal̂n(i) (= ∇fag(i)) and1 − fag(i)

is the data on the opposite side. For an explicit example, consider the four fluids distributed in one cell as
shown in Figure3.4, k(p) = 1, 2, 3, 4 for p = 1, 2, 3, 4, respectively, so for the first interface,fag(1) = f1,
for the second interface,fag(2) = f1 + f2, and for the third interface,fag(3) = f1 + f2 + f3. With this
onion skin [15] model, a multiple fluid, multiple interface configuration within a given cell is systematically
“reconstructed” by transforming the configuration into a sequence of simplified and distinct two-fluid, one-
interface representations. This simplification occurs via agglomeration of two of the fluids with one or more
of the other fluids for each interfacei present in the cell.

Besides the lack of an alternate homogeneous mix model, there are several acknowledged problems and
weaknesses with the volume tracking onion skin model for multiple (> 2) fluids within a cell:

• the prioritiesp for each fluid are in general spatially and temporally dependent, but are instead arbi-
trarily specified as constants by the user;

• agglomerating volume fractions within a cell can degrade and misrepresent the actual interface con-
figuration because of incorrect interface topology (normal) estimates;

LA-UR-08-0819 TRUCHAS Physics and Algorithms 33

Figure 3.4: A cell occupied by four immiscible fluids separated from one another by three interfaces (left)
is simplified into a sequence of three separate two-fluid, one-interface representations (right, top-to-bottom)
by agglomerating two of the fluids with one or more of the other fluids for each step in the sequence. The
agglomeration order depends upon specified fluidpriorities, e.g., apriority 1 fluid is treated first (right top),
the priority 2 fluid is agglomerated next (right middle), followed by thepriority 3 fluid. In this example,
fluid one has priority one, two priority two, three priority three, and four priority four.

• there is nothing precluding the intersection of interfaces within a cell (other than brute force ap-
proaches used in [16]), which can lead to volume fluxes having the wrong sign; and

• extensions for the presence of “non-fluid” (rigid solid boundaries, solidified material, etc.) materials
within a cell occupied by two or more fluids have not yet been formulated and tested.

As an example, for the second item above, if three fluids were to come in contact as a triple-point “T-
junction” (each fluid interface orthogonal to one of the others), the second reconstructed interface will have
a unit normal whose direction is as much as 50% in error. So in order to have a truly robust and accurate
volume tracking representation for multiple flowing and rigid solid materials residing within computational
cells, all of the above items can and must be addressed.

34 TRUCHAS Physics and Algorithms LA-UR-08-0819

3.2.2 Interface Dynamics: Surface Tension

Surface tension at interfaces between fluids is represented by Equation3.10as a body force acting on nearby
fluid. This approach, of modeling surface tension as a body force and so including it as a term in the Navier-
Stokes Equation3.2 was introduced by Brackbill et al. [3], and is referred to as theContinuum Surface
Force, or CSF method. Since its introduction, many variations on the original method have been introduced.
At the present time in TRUCHAS, the implementation of surface tension has not been generalized to the case
of more than two fluids, the topic introduced in Section3.2.1.5.

The surface tension forcefS of Equation3.10is decomposed into the sum of a normalfN
S and a tangential

fT
S force component:

fS = fN
S + fT

S (3.36)

with

fN
S = σκ(∇f) (3.37)

and

fT
S = (∇σ − n̂(n̂.∇)σ)δ. (3.38)

fT
S is discretized at cell-centroids to achieve force balance between viscous stresses and capillary forces.fN

S

is discretized at faces and is treated together with the pressure gradient, in a similar way as the body force
fB, to ensure proper balance of pressure gradient with surface tension force [17]. The curvature at face
κf is obtained by simple interpolation of the cell-centered curvatureκ. Next the techniques to compute the
curvatureκ are described.

The curvatureκ of an interface is a function strictly of the unit normalsn̂ to the interface:

κ = −∇ · n̂. (3.39)

As a result, discretization of Equation3.36is reduced to an evaluation of normals. In the current implemen-
tation, we consider two convolution methods to compute smoothed normals. Note that the convolution meth-
ods are only used in the intermediate step of evaluating normals in the computation of the curvature. The
computation of the normals used in the reconstruction of the interface planes is presented in Section3.2.3.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 35

1. The first approach follows the work of Rudman [18]. The normals are computed from smooth volume
fractions. The smooth volume fractions̃f are obtained by convolution of the discontinuous volume
fractions with a KernelK over a smoothing lengthd:

f̃ = K ∗ f, (3.40)

whereK is a cubic B-spline properly normalized and defined as

K(r, d) =
1
d2


40
7π

(
1− 6

(
r
d

)2 + 6
(

r
d

)3)
, if r

d ≤
1
2 ;

80
7π

(
1−

(
r
d

)3)
, if 1

2 < r
d ≤ 1;

0 , otherwise ,

(3.41)

with r2 = x2 + y2 + z2. The smoothed unit normals are then computed fromf̃ :

ˆ̃n =
∇f̃

|∇f̃ |
. (3.42)

2. The second approach follows the work of Williams [19]. The normals are obtained directly by
convolving the volume fractions with kernel derivatives:

ˆ̃n = (Kx ∗ f,Ky ∗ f,Kz ∗ f), (3.43)

where

Kx =
∂K6

∂x
,Ky =

∂K6

∂y
,Kz =

∂K6

∂z
, (3.44)

andK6 is the following kernel:

K6(r, d) =
{

4
πd8

(
d2 − r2

)3
, if r

d < 1;
0 , otherwise .

(3.45)

Once the smoothed unit normals are evaluated, the curvatureκ is calculated at cell-centers via a simple
discretization of Equation3.39:

κ ≈ −
6∑

f=1

ˆ̃n · n̂fAf

V
. (3.46)

ˆ̃n is the unit normal to an interface,n̂f the unit normal to each cell face,Af the area of each cell face, and
V the volume of the cell.

36 TRUCHAS Physics and Algorithms LA-UR-08-0819

3.2.3 Interface Topology

A normal vector to an interface between a materialk and any number of other materials is strictly defined
as the gradient of the volume fraction data

n = ∇fk and n̂ =
∇fk

|∇fk|
(3.47)

But thefk are a discrete form of a discontinuous Heaviside function, and so estimates of the gradients tend
to be very inaccurate. What is usually done, and what is implemented in TRUCHAS, is a spatial smoothing
of thefk field prior to the gradient evaluation, that leads to far better estimates of the normals.

The actual gradient calculation, at cell centers and at faces, is carried out via the least squares algorithms
documented in AppendixA.

3.2.4 Property Evaluation

Knowing the new-time volume fractions for materials in every mesh cell permits the straightforward eval-
uation of the fluid density and viscosity throughout the mesh. The properties of each individual material
may vary with the local temperature and species concentration; this dependence must be combined with the
material volume fractions to arrive at fluid properties for each cell. The dependence of properties other than
density is approximated by the general relation:

Φ (χi, Ti) =
∑

k

cT,k (Ti − Tref)eT,k +
∑
m

cχ,m (χi − χref)eχ,m (3.48)

wherecT,k andcχ,m represent a coefficient of volume expansion associated with a temperature and solu-
tal change respectively,Tref is the reference temperature for the material, andχref the reference solute
concentration for the material.

The fluid density of each material can be evaluated in one of two ways. If the Boussinesq model is invoked,
then individual material densities are independent of the local state, and the fluid density is simply a mixture
value of the reference values. In this case, buoyant forces are treated in the body force evaluation. Otherwise,
the full local state dependence is used throughout the flow solution.

A different formulation of the temperature and concentration dependence is used for the density in order to

LA-UR-08-0819 TRUCHAS Physics and Algorithms 37

correspond to standard terminology in the field. The density of each material is evaluated from:

ρ (χi, Ti) = ρref ·

[
1 +

∑
k

cT,k (Ti − Tref)eT,k +
∑
m

cχ,m (χi − χref)eχ,m

]
(3.49)

3.2.5 Momentum Equation

Our implementation is on an unstructured hexahedral mesh, with the primary variablesu andp located at
cell centers. To assess solenoidality, we also calculate a velocity fielduf at cell face centroids.

As described above, we discretize Equation3.2 to first order in time, and by introducing an interim “pre-
dicted” velocityu?, divide the resulting equation in two:

ρn+1u? − ρnun

∆t
= −∇ · (ρuu)n +∇ · (µn+1(∇u +∇T u)) + fn+1

S + fn+1
D −∇Pn + fn

B (3.50)

ρn+1un+1 − ρn+1u?

∆t
= −∇δPn+1 + fn+1

B − fn
B (3.51)

Equation3.50is a relation foru?, referred to as the predictor step. Equation3.51is termed the projection
step. Combining Equation3.50 and Equation3.51 exactly reproduces the time discretization of Equa-
tion 3.2; no additional approximation results from this decomposition, which is made simply for computa-
tional convenience.

Equation3.50and Equation3.51are evaluated at cell centers.fS , fD andfB represent the surface tension,
drag and body forces respectively. The unspecified time level of the viscous stress will be clarified below
(Section3.2.8).

The full solution of the momentum equation is more complex than implied by these equations because we
employ face velocities to impose the solenoidal condition on the velocity field, as will become clear in the
sequel.

3.2.6 Predictor Step

Solution of Equation3.50may proceed by either of two paths, depending upon the time level associated
with the viscous stress. If a fully explicit approximation is used, evaluation ofu? can proceed pointwise or
in parallel. If not, solution of a coupled set of linear equations is necessary. This is accomplished by the

38 TRUCHAS Physics and Algorithms LA-UR-08-0819

methods described in AppendixC. The sections below describe each of the terms on the right hand side in
turn.

3.2.7 Momentum Advection

Momentum advection is evaluated by using the volume tracking results to calculate∇ · (ρuu)n. Consider
Figure3.5, that illustrates the advection of material across the right face of a cell containing an interface
between two fluids. The advected volume is:

δVf = ∆tAfuf · n̂f (3.52)

whereuf · n̂f is the component of the solenoidal face velocityuf normal to the face, andAf is the face
area. Discretizing the advection term of Equation3.2, we obtain:

∆t

∫
∇ · (ρuu)ndV ≈

∑
f

δVf 〈ρu〉nf (3.53)

The volume tracking algorithm calculates the subvolumesδVk,f within the flux volumeδVf (see Figure3.5),
and we introducefk,f to represent the volume fraction ofδVf associated with a particular materialk:

fk,f =
δVk,f

δVf
(3.54)

Multiplying the δVk,f by corresponding densities yields the mass of each materialk leaving a cell across
facef :

Mk,f = ρkδVk,f (3.55)

and we designate the total mass leaving a cell across facef asMf ≡
∑

k Mk,f . Equation3.53may then be
written in a way that is wholly consistent with mass advection:

∆t

∫
∇ · (ρuu)ndV ≈

∑
f

∑
k

Mk,f 〈u〉nf =
∑

f

Mf 〈u〉nf (3.56)

Note that〈u〉nf is the estimate of the advected momentum per unit mass. For the purposes of this report we
have chosen this to be a simple upwind value, producing a first order accurate approximation.

3.2.8 Momentum Diffusion

The current version of TRUCHASoffers a model for laminar Newtonian viscous stress and a simple algebraic
turbulence model. If turbulence is modeled, the total stress tensor is determined by the velocity gradients
and the effective viscosity as given in Equation3.5.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 39

Figure 3.5: The advection of material across the face of a cell containing an interface between two fluids.
The volume tracking algorithm calculates the individual flux volumesV1,f andV2,f .

Viscous forces are incorporated into the predictor estimate of the cell-centered velocity field by averaging
time n and time∗ values of the velocity field. The selection of the averaging is controlled by the user
through an input parameterVISCOUSIMPLICITNESS . The explicit approximation eliminates the need
for solving a system of equations, while more implicit approximations are stable for larger time steps.

The net viscous stress on the control volume is calculated by applying the divergence theorem to the volume
integral of the local stress. This reduces to a sum of the dot product of the face normal vector with the local
velocity gradient multiplied by the face area:

~Fυ =
∑

f

µfAf [n̂f ·
(
∇u +∇Tu

)
] (3.57)

The velocity gradient can be calculated by either the weighted least squares method, or by an orthogo-
nal approximation, as selected by the user. (See the description ofUSEORTHOFACEGRADIENTin the
Reference Manual .) AppendixA (Discrete Operators) describes the least squares method in a general
context. The tensor nature of the velocity gradient is simply handled component by component. The velocity
gradient is first order accurate, resulting in second order errors in the viscous stress.

The fluid viscosity is harmonically averaged to face centroids from cell centered values using an orthogonal
approximation. The cell centered values of viscosity are the sum of the fluid-weighted, temperature and
solute concentration dependent laminar values and the product of the eddy viscosity and the fluid density.

Boundary conditions are enforced on all faces where they are specified. This is performed by modifying the
velocity gradient after its initial evaluation by least squares at those locations. The boundary conditions are
not directly incorporated into the weighted least squares evaluation, and therefore only affect the velocity

40 TRUCHAS Physics and Algorithms LA-UR-08-0819

gradient at the faces at which they are applied.

3.2.9 Transfer the cell-centered Velocity to Faces

To facilitate the volume tracking algorithm (Section3.2.1) we require a set of face velocities that are
solenoidal with respect to the basic conservation cells. To ensure this, we compute the face velocities
from the cell centered velocities, then impose the solenoidality condition (Equation3.12).

To suppress spatial oscillations in the pressure and velocity, we apply a modification of the Rhie-Chow
[6] procedure. That is, we interpolate a modified version ofu? that is augmented by the cell-centered
approximation to the difference between the body force and the pressure gradient (multiplied by∆t/ρ),
evaluated at timen. See the first term on the right hand side of Equation3.58.

The interpolation is done using a least squares linear reconstruction technique similar to that of Barth [20],
as we assume that the normal component of velocity does not vary discontinuously near an interface. This
is thec→ f step in Equation3.58. The resulting stencil typically includes several cells in the region of the
face under consideration. Density, on the other hand, varies discontinuously across an interface so we limit
the size of this stencil by calculating a face density using only the two cell densities adjacent to the face.

After interpolation, a face-centered approximation to the difference between the body force and the pressure
gradient (multiplied by∆t/ρ) is added to the face velocity, to obtain the time level∗ face velocity. That is:

u∗f =

〈
u∗c + δt

〈
1
ρf

(∇fP − fB)
〉n

f→c

〉
c→f

− δt

ρn+1
f

(
∇fPn − fn+1

B

)
(3.58)

Here, the operatorf → c means averaging the face values of this quantity, in the same fashion as used in
Section3.2.11.)

This combination of the body force and pressure gradient permits numerically balancing the body force with
a pressure gradient, if the curl of the body force is zero. (Gravitational forces are a trivial example of a zero
curl body force.) Cancellation is critical to the correct computation of hydrostatic (or nearly hydrostatic)
situations, to avoid numerical oscillations which prevent the simulation from reaching steady state.

3.2.9.1 Transfer of cell-centered velocities to faces when using orthogonal operators

In the event that ortho-approximations are used for the discrete operators (either because the user has ex-
plicitly requested it, or because TRUCHAS has determined that the mesh is orthogonal) a different approach

LA-UR-08-0819 TRUCHAS Physics and Algorithms 41

is taken in balancing the pressure and gravitational terms. In this case the pressure gradient and the gravity
force are combined (in Equation3.50) by including the body force due to gravity,fn

B, in the pressure gradient
term. The continuous form of the pressure term, which is now the gradient of the dynamic pressure, is then:

∇(P − (ρ + ∆ρ)~g · ~x) (3.59)

The timen value of Equation3.59 is determined from an average of the previous time’s face values. As
described in the previous section the predicted face velocity is calculated using the most recent face centered
value of the pressure gradient. In this case Equation3.59is evaluated on a face.

In general we need to consider that two neighboring cells have different densities so that the discrete (normal)
gradient of the dynamic pressure across cell facef for cell i is:

(
∂P

∂n

)f

i

=
(Pi − (ρi + ∆ρi)~g · ~∆xi − (Pn − (ρn + ∆ρn)~g · ~∆xn))

∆l

~∆l

∆l
· ~n (3.60)

wherePi/Pn, ρi/ρn, and∆ρi/∆ρn are the cell centered pressure, density, and buossinesq density variation
for cell i and its neighborn. ~∆xi/ ~∆xn is the distance from the cell centroids of celli and its neighborn.
~g is the gravitational acceleration,~∆l is the vector distance between the cell centroids,∆l is the magnitude
of the distance between the cell centroids and~n is the cell face normal. The densities and their deviates are
evaluated at the advanced time in this step.

The equation for interpolating the cell centered velocities to the faces then becomes

u∗f =

〈
u∗c + δt

〈
1
ρf
∇fP d

〉n

f→c

〉
c→f

− δt

ρn+1
f

(
∇fP d

)n
(3.61)

dotted with the cell face normal since we are only concerned with the normal component of the velocity.
The pressure gradient∇fP d · ~n, whereP d is the dynamic pressure, is calculated from Equation3.60.

By following this process the static pressure is accounted for exactly, thus removing errors in the contribution
of the static component to the total pressure. This is particularly important when the orthogonal operators
are used on non-orthogonal meshes. Without this procedure one would see fluid erroneously moving about
in a static pressure head calculation.

42 TRUCHAS Physics and Algorithms LA-UR-08-0819

3.2.10 Projection

Equation3.51relatesun+1 to u?; combining Equation3.51with Equation3.12yields:

∇ · ∇δPn+1

ρn+1
= ∇ · (u

?

∆t
) (3.62)

We solve Equation3.62 for δPn+1 (using the techniques of AppendixC), and complete the timestep by
evaluatingun+1 via Equation3.51.

Divergences are calculated by summing over cell faces, and∇δPf is calculated from a stencil corresponding
to that of the density interpolation to faces. Equation3.51 is then used to calculate a solenoidal (to the
precision required by the projection solution) face velocity field:

un+1
f = u?

f −∆t(
∇δPn+1

f

ρn+1
f

) (3.63)

3.2.11 Adjust Cell Centered Velocity for Pressure Gradient

The final step is to interpolate∇δPn+1
f /ρn+1

f to cell centers in order to obtainun+1 from u? via Equa-
tion 3.51.

Note that only the dynamic component of the pressure gradient is used in this step. Subtracting the hydro-
static component from pressure gradient before averaging permits the numerical cancellation of body force
and pressure gradient in both the face centered and cell centered velocity results.

The average is calculated by weighting the value at each face by the face area normal to each coordinate
direction.

When orthogonal discrete operators are being used we interpolate∇δ(P d
f)n+1/ρn+1

f .

3.2.12 Flow Past Solid Material

Some mesh cells may occasionally contain a sharply defined partial volume of solid material, either when a
solid mold material is initially defined to occupy a portion of the computational domain not exactly aligned
with mesh cells, or when a pure material undergoes solidification, such that the interface between liquid and
solid is a well defined moving front. In either case, the flow solver must then deal with cells that contain
less than an entire cell volume of fluid.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 43

The TRUCHAS approach is as follows. Cell faces are defined in a binary way to be entirely closed to flow,
or not. Cell faces are deemed to be “closed” only if at least one of the two immediately neighboring cells
is entirely composed of solid material. In that case, the face velocity of the cell is set to zero, and the face
pressure gradient is no longer included in the pressure solution..

Any face between two cells that both contain at least a partial cell volume of fluid is deemed to be “open”,
and the code solves for a velocity and a pressure gradient. No attempt is made to account for partial face
areas open to flow, because of the complex geometry associated with an unstructured hexahedral mesh and
also because cell faces may not be planar.

3.2.13 Flow Through Porous Media

Solidification of many materials, including most metals, proceeds by the formation of solid dendrites em-
bedded within a liquid matrix. This process generates a solid morphology that provides only tortuous paths
for fluid to traverse, leading to significant drag forces on the liquid component. These drag forces are often
non-isotropic which can lead to interesting macroscopic features (such as channels) in the solidifying flow.

TRUCHAS uses a porous medium model to represent such drag forces. The model assumes that the drag
force is linearly dependent on the fluid superficial velocity (Darcy law). Each velocity component is treated
independently, and the coefficients (permeability) in each direction are independent. We have not imple-
mented a tensor permeability because of the complexity of such a model and the lack of information upon
which to base it.

The specific form chosen for the drag is the Carman-Koseny relation [21]:

~Fdrag = −
↔
C · (1− f)2

f3
~un+1 (3.64)

where
↔
C is the directional permeability andf the fraction of the cell volume occupied by fluid. The direc-

tional permeability is a diagonal tensor whose elements are evaluated as volume weighted averages of the
solid material permeabilities within each cell.

3.2.14 Treating Some Fluids as Void

Because both pressure gradients and momentum fluxes are often much smaller in gas regions of the fluid
domain than the liquid regions, a void model can be used to simplify the equations to be solved. We permit

44 TRUCHAS Physics and Algorithms LA-UR-08-0819

a special type of fluid in TRUCHAS to identify regions we wish to model as void by prescribing that the fluid
density is zero for the void material. This has several effects on the solution:

Void Cells: Cells that contain only materials of zero density have zero momentum and a fixed
pressure. Therefore, it is unnecessary to solve any of the flow equations in such cells. All the
components of the fluid velocity are set to zero in void cells. The temperature in void cells is set
to an input value, primarily for visualization purposes, but does not affect the thermal solution
elsewhere in the domain.

Mixed Cells: Cells that contain a mixture of void material and one or more other fluid materials
are treated differently than cells that contain no void. The difference derives from the need to
model the “compressibility” of void materials. That is, we may not wish to treat such materials
as having a constant density. The compressibility of void material is expressed as a modification
of the continuity equation (Equation3.12), which becomes:

∇ · u = ξ
∂P

∂t
(3.65)

whereξ is the compressibility of the local fluid. Although vacuum is infinitely compressible, it
has been found that using a finite value for the compressibility leads to a more robust numerical
procedure; therefore TRUCHAS permits the specification of this through an input parameter.

We wish to transition smoothly as the void fraction of a cell diminishes toward zero. Therefore,
we choose to determine the compressibility of a cell as a weighted average of the materials
in the cell. Since all materials other than void have no compressibility, this leads to simply
multiplying the compressibility of the void material by the fraction of the fluid in the cell that
is void.

We also make use of the thermodynamics of isentropic compression of a perfect gas to relate
the compressibility to an effective “sound speed” of the void through the relation:

ξ ≡ − 1
ρc2

(3.66)

wherec represents the sound speed, which is the parameter chosen as input for TRUCHAS. The
density chosen for this relationship is the average fluid density in the cell.

This model is sometimes referred to as the “void collapse” model in TRUCHAS. This term
expresses the idea that void compressibility eliminates a problem that existed in previous ver-
sions of the program. Since those versions treated void materials as incompressible in any cell
that contained other fluid, it was not possible for internal void regions (bubbles) to collapse
completely. Filling simulations frequently showed residual voids, which led to considerable
additional problems with the thermal solution.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 45

The present model relies on the specification of a “reasonable” sound speed, that must currently
be determined by computational experience. Research is continuing on ways to reduce the
arbitrary nature of this model.

46 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 4

Heat Transfer and Phase Changes

The following chapter presents the heat transfer and phase change algorithms incorporated into TRUCHAS.
The heat transfer algorithm solves the enthalpy advection equation with sources implicitly. The phase change
algorithm assumes binary temperature-concentration phase diagrams but can employ multiple phase trans-
formation types. The heat transfer and phase change section is responsible for calculating the enthalpy,
solutal concentration and solid volume fractions given fluid velocities and chemical, electromagnetic and
user specified heat sources.

4.1 Physics

4.1.1 Assumptions

We list the primary assumptions of the heat transfer and phase change modeling below.

• Local thermodynamic equilibrium, e.g.,T1 = T2 = Tm = T for all materialsm in a given cell.

• No solid movement

• Scalar, isotropic heat diffusion

• Use of binary temperature-concentration phase diagrams whose equilibrium lines are approximated
by straight lines.

• The specific enthalpy (per volume, or per mass) does not depend on pressure and only depends on
temperature and concentration

LA-UR-08-0819 TRUCHAS Physics and Algorithms 47

4.1.2 Material Properties

The concept of a “material” is extended to include “phases.” Solid Cu and liquid Cu are therefore different
“materials.” Each cell may containnmat materials at thermodynamic equilibrium.

The density of each material is assumed constant and the average density of the cell is given by:

ρcell =
nmat∑

m

ρmfm (4.1)

wheref are the volume fractions of all materials in the cell and:

nmat∑
m=1

fm = 1 (4.2)

In the current implementation, materials that are part of a series of phase transformations must all have the
same density. The specific heat capacity at constant pressure (per unit mass) of each material is represented
as a polynomial in temperatureT and compositionc:

CP (T) =
imax∑
i=0

CiT
ei +

jmax∑
j=0

Djc
ej (4.3)

where the indexesi andj, C andD are real coefficients andei, ej 6= −1 are real exponents.

A typical form of the temperature depended heat capacity, consistent with the commercial databases, is:

CP (T) = A + BT + CT 2 + DT−2 (4.4)

The heat capacity is related to the specific enthalpy (per unit mass) by:

CP (T) =
(

∂h

∂T

)
P

(4.5)

That allows for the integration of the heat capacity to obtain the specific enthalpy:

h(T) = href +

T∫
Tref

CP (τ)dτ (4.6)

where the superscript ’ref’ is used to describe the reference temperature and enthalpy. The reference states
are internally chosen as the lowest temperature of stability for a certain material and the corresponding
enthalpy. As an example, for a liquid, the melting temperature is used as reference (see Figure4.1). In

48 TRUCHAS Physics and Algorithms LA-UR-08-0819

the case of binary alloys, the reference is the temperature corresponding to the liquidus line, at the specified
concentration. The most stable solid phase is referenced to zero, both in temperature and enthalpy. Although
the latent heat is temperature dependent, the parameter used as input is the latent heatLL at the liquidus
temperature. For an isothermal transformation,TS = TL andLS = LL. In the mushy zone Equation4.5
defines the “effective” heat capacity.

Figure 4.1: Typical specific enthalpy of an alloy as function of temperature. The enthalpy in the mushy zone
depends on the phase transformation model.

The integration of the typical form of the heat capacity Equation4.4 leads to:

h(T) = href + A(T − Tref) +
B

2
(T 2 − T 2

ref) +
C

3
(T 3 − T 3

ref)−D
(1

T
− 1

Tref

)
(4.7)

The total enthalpyH of a cell of volumeVcell is given by:

Hcell(T) = Vcell

nmat∑
m=1

ρmfm(T)hm(T) (4.8)

The cell properties are referenced to zero, for both temperature and enthalpy, to avoid the ambiguity created
by various references in multi-material cells. For constant heat capacity, various specific (per unit mass)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 49

properties of the “fully homogenized” material in a cell are internally calculated and used for checking
thermodynamic consistency:

hcell(T) =

∑
m

hm(T)ρmfm

ρcell
(4.9)

CPcell =

∑
m

CPmρmfm

ρcell
(4.10)

href
cell =

∑
m

(
href

m − CPmT ref
m

)
ρmfm

ρcell
(4.11)

4.1.3 Phase Diagrams

Only binary temperature-concentration phase diagrams are allowed for now. Multi-component systems will
be included in future versions of the code. The binary diagrams can feature complete solubility or eutectic
points. Figure4.2shows a typical diagram of a generic system with complete solubility both in the liquid (L)
and solid solution (SS). The melting temperatures of the two components areTM

A andTM
B . The equilibrium

lines are approximated by straight lines. At a given temperatureT1, after thermodynamic equilibrium was
achieved, the concentrations in the two phase are given byxL andxS . For a given concentrationx0, the
corresponding temperatures areTL andTS .

Given the straight line approximation, the slopes of the liquidus and solidus lines are:

SL =
TL − TM

A

x0
(4.12)

SS =
TS − TM

A

x0
(4.13)

Both positive and negative slopes are allowed (see Figure4.3). The partition coefficient is defined as:

K =
xS

xL
=

SL

SS
(4.14)

The eutectic points (Figure4.4) are define by compositionxE and temperatureTE . At the eutectic temper-
ature the transformation is isothermal. A limitation of the current implementation is that forx0 between the
solubility limits, the concentration is fixed below the temperatureTE , and the decompositionSS1 + SS2 is
not captured.

50 TRUCHAS Physics and Algorithms LA-UR-08-0819

Figure 4.2: Binary system with complete solubility and positive liquidus slope.

Figure 4.3: Binary system with complete solubility and negative liquidus slope

4.1.4 Phase Changes

Multiple, consecutive phase transformations are allowed in Truchas. Besides the isothermal transformation,
the “non-isothermal” type is defined by the specific enthalpy of an alloy as a function of temperature (see
Figure4.1). This is useful to describe multi-component alloys for which the phase diagram is unknown.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 51

Figure 4.4: Binary system with eutectic

Several phase transformation models are implemented to describe binary alloys. The models provide the
volume fractions at a given temperature and are described in more detail below.

4.1.4.1 Lever rule

In this model the diffusivity of the solute is assumed to be infinite in both the liquid and the solid. The
system equilibrates instantaneously and the volume fraction of the solid at temperatureT is:

fS =
(
1− x0

xL

) 1
1−K

(4.15)

In the present straight-line approximation, we have

x0

xL
=

TL − TM
A

T − TM
A

. (4.16)

4.1.4.2 Scheil

The Scheil model preserves the infinite diffusivity in the liquid but assumes that the solute does not diffuse
at all in the solid. The volume fraction of the solid is given by:

fS = 1−
(

xL

x0

) 1
K−1

(4.17)

52 TRUCHAS Physics and Algorithms LA-UR-08-0819

For the eutectic diagram shown in Figure4.4, the dashed line represents the average concentration in the
solid during a solidification process. However, at any fixed temperature, the concentration of the new formed
solid is given by the equilibrium solidus line (blue).

4.1.4.3 Clyne and Kurz

This model allows for a finite value of the diffusivity of the solute in the solid phase [22]. The diffusivity in
the liquid is still infinite. The model features a control parameter, relating the diffusivity of the solute in the
solid phaseDS

B, the solidification time∆t, and the dendrite arm spacingλ:

α =
DS

B ∆t

(λ/2)2
(4.18)

The parameterα can take any positive value and is mapped onto the [0, 0.5] interval by the function:

F (α) = α
(
1− e−

1
α

)
− 0.5 e−

1
2α . (4.19)

Finally, the volume fraction of the solid is calculated as:

fS =
1
u

1−
(

xL

x0

) u

K − 1

 , (4.20)

with

u = 1− 2KF (α) . (4.21)

Here,K is the partition coefficient (Equation4.14). We note that the lever rule corresponds toF (α) = 0.5,
whereas the Scheil equation corresponds toF (α) = 0.

4.1.4.4 Volume Change During Phase Change

In case of phase changes that involve a volume change we compute the volume change due to phase change
by conserving the mass of the cell. Let us say that there is a cell which has a massM1 defined by materials
of volumesV1

i and densitiesρi
1. Let us say that the enthalpy of this cell changes resulting in a phase change.

This changes the volumes of the materials toV2
i and the densities toρi

2 resulting in a mass change toM2. If
we constrain the mass of the cell after phase change to be equal to the mass of the cell before phase change,
this sets up the following equations:

M1 = M2 = M

⇒
(
ρH
1 fH

1 + ρL
1 fL

1

) (
V1

H + V1
L
)

=
(
ρH
2 fH

2 + ρL
2 fL

2

) (
V2

H + V2
L
)

⇒
(
V2

H + V2
L
)

=
(
V1

H + V1
L
) [ρH

1 fH
1 + ρL

1 fL
1

ρH
2 fH

2 + ρL
2 fL

2

]
(4.22)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 53

where the superscript H refers to the high temperature phase and the superscript L refers to the low temper-
ature phase involved in the phase change, the subscript 1 refers to values before the phase change took place
and the subscript 2 refers to the final values after the phase change, andfH + fL = 1 for both states 1, and
2.

Using Equation4.22we can now calculate the change in total volume of the cell as:

V 1
cell =

∑
i

V1
i =

∑
i6={H,L}

V1
i +
(
V1

H + V1
L
)

V 2
cell =

∑
i

V2
i =

∑
i6={H,L}

V2
i +
(
V2

H + V2
L
)

⇒ V 2
cell = V 1

cell +
[
ρH
1 fH

1 + ρL
1 fL

1

ρH
2 fH

2 + ρL
2 fL

2

− 1
] (

V1
H + V1

L
)

This gives us a change in volume of the cell as:

∆Vcell =
[
ρH
1 fH

1 + ρL
1 fL

1

ρH
2 fH

2 + ρL
2 fL

2

− 1
] (

V1
H + V1

L
)

(4.23)

and a change in density of the cell as:

∆ρcell = M

(
1

V 2
cell

− 1
V 1

cell

)
(4.24)

Note that if the densities of other materials in the cell were temperature dependent, then that would be
reflected in this equation as well.

4.1.5 Boundary and Initial Conditions

4.1.5.1 Radiative Boundary Conditions

Two types of radiative boundary conditions are implemented in TRUCHAS:

• Radiation to an ambient temperature

• Viewfactor based enclosure radiation model

54 TRUCHAS Physics and Algorithms LA-UR-08-0819

Radiation to an ambient Temperature
This boundary condition replaces the flux on boundary surfaces using the Stefan-Boltzmann law and a time
varying ambient temperature. The flux leaving any surface calculated thus can be written as:

q = −εσ(T 4
f − T 4

o) (4.25)

whereTf is the (absolute) temperature at the boundary face,ε is the emissivity,To is the (absolute) ambient
temperature, andσ is the StefanBoltzmann constant. Since TRUCHAS uses cell based temperatures, the
temperature at the face is calculated by equating the flux leaving the surface due to radiation to the conductive
flux from the center of the cell. This is achieved by solving the following equation:

k(Tf − Tc)− εσ(T 4
f − T 4

o) = 0 (4.26)

wherek is the conductivity of the cell,Tc is the temperature at the cell temperature, and all other symbols
are as defined before. The above equation is solved for every face that participates in the boundary condition
at every iteration of the solver.

Viewfactor based enclosure radiation model
TRUCHAS also supports a more sophisticated radiation model for enclosures within the simulation domain
where radiation leaving one face might arrive at another face within the system. In this case we use a
viewfactor based enclosure radiation model. This model works by first calculating the fraction of energy
leaving any given surface within the enclosure and arriving at any other surface therein, also called the
viewfactors. We use the Chaparral package from Sandia National Laboratory to calculate the viewfactors,
and additional details on the calculation of viewfactors can be found therein.

Once we have the viewfactors, we calculate the fluxqi at an external boundary facei using the temperatures
on all other facesj and the ambient temperature as:

qi = −εiσT 4
i − (1− ρi)

∑
j

Fijqj (4.27)

whereεi is the emissivity of facei, σ is the Stefan-Boltzmann constant,Ti is the absolute temperature at the
boundary face,Fij is the view factor of facej as seen from facei, and the sum onj is over all faces in the
system and includes a special term for the contribution from the ambient environmant.

This sets up a linear system of equations that is solved for the fluxes,qi. As with the simple radiation model,
the face temperatures can be found by nesting this solve within a second loop that adjustsTf based on the
flux from each facei to the center of the corresponding cell.

Since this calculation is done on every iteration of the solver for every timestep, it has the capability to slow
down the heat transfersolution. To speed the calculation, we allow the user the option of choosing from the
following two approximations:

• Use cell temperatures forTf

LA-UR-08-0819 TRUCHAS Physics and Algorithms 55

• Useq based on previous timestep cell temperatures

The first of these approximations, using cell temperatures instead of face temperatures, eliminates the need
for the nested solve for face temparatures, while the second approximation allows us to calculate the radiative
fluxes once every time step and impose a flux boundary condition on the corresponding faces. Both these
approximations are independent of each other and can be used based on the timestep, size of cells in the
system, and the overall accuracy of the solution desired.

4.1.6 Conservation Law

The heat transfer algorithm solves for the mixture specific volume enthalpyh and mixture densityρ via the
following conservation law,

∂(ρh)
∂t

+∇ ·
(
ρLhLfLu

)
−∇ · (κ∇T) = p (4.28)

wherefL andhL are the liquid volume fractions and the liquid specific volume enthalpy respectively (note
that as solid is not mobile, only the liquid component of the enthalpy is advected). Body sources are
represented byp. In the current version of the code these body sources are due to eddy current induced
Joule heating, chemical exothermal reactions and to a user specified Gaussian source/sink.

4.1.7 Boundary Conditions

The boundary conditions implemented into the code are imposed on the temperature field and include Dirich-
let and Neumann. It is also possible to specify a heat transfer coefficient,htc which will set the magnitude
of thermal flux between two materials. The flux is set to be proportional tohtc and to the temperature differ-
ence on opposite sides of the material interface:flux = htc(T+ − T−). Convective cooling at a surface is
implemented as a special case of the heat transfer coefficient boundary condition withT− set to the ambient
temperature outside the cooled part.

4.1.8 Interaction With Other Physics

The interactions of the heat transfer and phase change solution are primarily with the flow solution and to
a lesser extent, the chemistry and electromagnetic solutions. Given the fluid velocity, this section calculates
the mixture specific volume enthalpy due to flow advection, chemistry and electromagnetic heat sources.

56 TRUCHAS Physics and Algorithms LA-UR-08-0819

It also calculates new temperatures, solutal concentrations and solid fractions which feedback into the flow
solution as changes in material properties.

4.2 Heat Transfer Algorithm

The heat transfer algorithm in Truchas is based on a finite volume discretization of the enthalpy formulation
of the energy conservation. The finite volume approach ensures that the numerical scheme is locally and
globally conservative, while the enthalpy formulation allows treatment in a straightforward and unified man-
ner many possible phase change mechanisms. The phase boundary in the enthalpy method is not tracked,
but is captured via the continous solid/liquid fraction fields. A finite difference variant of the algorithm is
described in a paper by Knoll, Kothe and Lally [23].

To solve Equation4.28 an implicit treatment is employed for the diffusion and temporal terms, a semi-
implicit treatment for the advection term and an explicit treatment for the source terms. This treatment is
employed because the stability restrictions on the diffusion term are more severe than those on the advection
or source terms. The sources currently allowed in the code are Joule heating, due to eddy currents flow-
ing through the melt induced by an exterior induction coil (seeChapter7), the power source of chemical
nature (seeChapter5), and a Gaussian source/sink as specified in theHEAT SOURCES NAMELISTin the
Reference Manual .

4.2.1 The Discrete Equations and the Non-linear Residual

The non-linear residual given below in Equation4.29is used in this algorithm to both evaluate the next iterate
of the Newton iteration and to evaluate the Jacobian· vector products during the linear solve with conjugate
gradient-like Krylov iteration (see the chapter on Non-linear solution methods). The non-linear residual
vector isncellslong, wherencellsis the number of cells in the simulation. In every cell, upon convergence
of the current non-linear iteration, the residualF (kHn+1) should fall below a specified threshold. Here,k
is the non-linear iteration index,n + 1 is the index of the time level at which the solution is sought, and
H is the total enthalpy in the cell of interest. During the iteration, the residual is non-zero and is written
down explicitly with the use of local conservation of energy (Equation4.28). The terms in Equation4.29
are all in finite-volume form just as they appear in the code. The terms in curly brackets indicate a discrete
approximation of the enclosed operator.

{
∂H

∂t

}
n+1

+
{ 6∑

F=1

DiffFluxF

}
n+1

+
{ 6∑

F=1

AdvFluxF

}
n

−

Pn,Joule − Pn,Chem − Pn,Other = F (kHn+1) (4.29)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 57

The advection term (sum) has a semi-implicit form. A single term of the sum is written in more detail in
Equation4.30. The face velocityuF,n+1 is computed from converged cell-centered velocity values at the
current time step (t = tn+1), while the specific enthalpy is taken att = tn. Here,F is a cell face index which
ranges from 1 to 6 on a hexahedral mesh. Non-liquid materials are assumed to be immobile in the code and
thus do not contribute to enthalpy advection. In Equation4.31, the explicit and semi-implicit advection
terms are grouped into a quantityP∗ which is computed once at the beginning of the time step.P∗ is further
used to set the first non-linear iterate of the Newton iteration at the new time leveln + 1 (Equation4.32).

{
AdvFluxF

}
n

= uF,n+1n̂F AF hliq,n, (4.30)

P∗ =
{ 6∑

F=1

AdvFluxk

}
n

+ Pn,Joule + Pn,Chem + Pn,Other (4.31)

1Hn+1 = P∗δt + Hn (4.32)

The two remaining terms on the left hand side of Equation4.29are the flux term (sum) and the time deriva-
tive of H. The latter is given in Equation4.33and results in a second order time derivative approximation
(o(δt2)) at the half-time level (t = tn + 0.5δt). For a locally orthogonal mesh, a single term in the total
diffusive flux sum is written in Equation4.34. Here,RF is the vector connecting cell centers,AF is the
face area,kF is face conductivity and̂nF is unit face normal. For a non-orthogonal mesh, the flux operator
must be different. Truchas provides two types of flux operators to use for non-orthogonal meshes for heat
transfer. See AppendixA and AppendixB for details. By default, the discretization for orthogonal meshes
is fully implicit. This corresponds toθ = 1 in Equation4.35and Equation4.36. However,θ is a user defined
quantity and is specified asConduction implicitness variable in the NUMERICS namelist. The stability
restrictions on the diffusion term are more severe than those on the advection or source terms. The source
terms currently do not depend explicitly on the enthalpy, or the temperature field. Therefore a fully implicit
discretization is a sensible choice for the diffusion term.{

∂H

∂t

}
n+1

=
kHn+1 −Hn

δt
(4.33)

{
DiffFluxF

}
n+1

= −RF n̂F AF kF
T (khn+1, hn, θ)− T (khn+1,F , hn,F , θ)

R2
F

(4.34)

For pure materials or alloys undergoing non-isothermal transformations, the cell-centered temperatures are
evaluated by inverting ah(T) thermodynamic relationship. For temperature dependent properties and in
the phase change region of a binary alloy such an inversion also requires taking into account the volume
fractions given by the solidification model and the concentrations given by the phase diagram. This is

58 TRUCHAS Physics and Algorithms LA-UR-08-0819

achieved via a local cell-by-cell Newton-Raphson iteration (see the PHYSICS NAMELIST section for the
h(T) specification used in the code).

T (khn+1, hn, θ) = θT (khn+1) + (1− θ)T (hn) (4.35)

T (khn+1,F , hn,F , θ) = θT (khn+1,F) + (1− θ)T (hn,F) (4.36)

4.2.2 Preconditioninig

The linear solution in Truchas requires preconditioning of the locally linearized non-linear system of equa-
tions. The Jacobian based linearization, and the details of the conjugate gradient and general minimum
residual (GMRES) algorithms are described in detail in the NON-LINEAR SOLUTION chapter and Ap-
pendixC. A preconditionioning strategy adopted elsewhere in the code uses an approximation to Jacobian
for improving the condition of the local (in time) linear system. The preconditioner is formed once at the
beginning of each time step and the matrix formed in the code initially coincides with the Jacobian on or-
thogonal grids (the true Jacobian changes with every non-linear iteration). Therefore, the preconditioner can
be written as follows:

Pn+1 ≡
∂F(H)

∂H

∣∣∣∣
1Hn+1

, Pij =
∂F (Hi)

∂Hj
(4.37)

Here,i andj are cell indexes. The preconditioner is sparse. On a hexahedral mesh and with a seven point
diffusive flux operator the preconditioner has at most seven non-zero elements in every row. An off-diagonal
and a diagonal elements of the preconditioner are formed in Equation4.39and Equation4.38. In the current
state of the code the form of preconditioner is the same for an orthogonal and a non-orthogonal mesh.

i = j, Pii = δt−1 − θ
∂Ti

∂hi

1
V oli

6∑
F=1

RiF n̂iF AiF kiF

R2
iF

(4.38)

i 6= j, Pij = θ
∂Tj

∂hj

1
V olj

Rijn̂ijAijkij

R2
ij

(4.39)

WhereVoli,Volj are cell volumes and the1Cp
factor is evaluated using the appropriateh(T) relationship in

every cell, taking into account possible multi-material (multi-phase) composition. In cells undergoing phase
change, theCp is replaced by the effective heat capacityeffCp, which incorporates the incremental release

LA-UR-08-0819 TRUCHAS Physics and Algorithms 59

of latent heat with an incremental change in the solid/liquid fraction. For example for a cell composed of
solid with solid fractionfS and liquid of liquid fraction1− fS the effective heat capacity would read:

effCp = Cp,liq +
dfsol

dT
(hsol(T)− hliq(T)) + fsol(Cp,sol − Cp,liq) (4.40)

The solid fraction increments with temperature are formed analytically using one of the currently avail-
able phase change models such as isothermal and non-isothermal transformations and binary alloy specific
Scheil, Lever and Clyne and Kurz models. For an isothermal transformation the efffective heat capacity is
set at a large finite value, while its inverse is essntially zero resulting in near zero off-diagonal terms and a
diagonal termPii = δt−1 for the cells undergoing phase transformation.

4.2.3 Heat Sources/Sinks

4.2.3.1 External Heat Source

All heat sources defined with this namelist are “volumetric heat sources,” i.e. the amount of energy deposited
in a cell over a given time step has the units of energy/volume. The integral of the heat source over the
domain divided by the incremental time step gives the total power defined by the heat source constant.
(Note that , in the case of the moving Gaussian below, if the heat source is defined partially outside of the
domain this will not be the case.) The two cases below are mutually exclusive, such that only one or the
other can be specified in the input file, and not both.

• Moving Gaussian:
This type of source is distributed throughout some portion of the domain weighted by a Gaussian
distribution, i.e. the change in energy,∆E, in a cell due to the heat source over a time step∆t is given
by,

∆E =
A

π3r1r2r3
exp

(
−
(

x1

r1

)2

−
(

x2

r2

)2

−
(

x3

r3

)2
)

∆tV , (4.41)

where(r1, r2, r3) represents the radii of the heat source,(x1, x2, x3) is the vector from the cell center
to the centroid of the heat source,V is the cell volume andA is the heat source constant. The total
amount of energy,∆EΩ over a time step,∆t, is determined by the equation

∆EΩ =
∫

Ω

A

π3r1r2r3
exp

(
−
(

x1

r1

)2

−
(

x2

r2

)2

−
(

x3

r3

)2
)

∆tdV , (4.42)

whereΩ represents the domain. Note that∆EΩ = A∆t.

60 TRUCHAS Physics and Algorithms LA-UR-08-0819

• Picewise Constant:
This type of source is the sum of scaled characteristic functions of mutually disjoint subdomainsΩi,
i = 1, . . . ,M of the domainΩ, such that

q(x, y, z) =
M∑
i=1

AiχΩi(x, y, z), (4.43)

whereAi is the value of the volumetric heat source in subdomainΩi. The change in energy,∆E in a
cell due to the heat source over a time step∆t is given by

∆E = q∆tV, (4.44)

whereV is the cell volume. In other words, if the cell is contained inΩi, then we have

∆E = Ai∆tV. (4.45)

The total amount of energy,∆EΩ, over a time step is determined by the equation

∆EΩ =
∫

Ω
q∆tdV =

M∑
i=1

Ai

∫
Ωi

dV. (4.46)

We note that the special case, whereM = 1 andΩ1 = Ω is possible. This is the case where a constant
volumetric heat source is specified over the entire domain,q(x, y, z) = A.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 61

62 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 5

Chemical Reactions

The following chapter presents the chemistry capabilities incorporated into TRUCHAS. The chemistry sec-
tion is responsible for calculating an exothermic heat source to be employed as a source term in the solution
of the heat transfer component.

5.1 Physics

Chemical reactions in TRUCHAS are modeled as auto-catalytic reactions of the kind

A→ B[+C...] + ∆h (5.1)

We can write the time evolution equation ofC(t), the concentration of A, as:

∂

∂t
C(t) = (k1 + k2 ∗ C(t)m)(Cmax − C(t))n

k1 = ko
1 ∗ e−Ea

1 /RT

k2 = ko
2 ∗ e−Ea

2 /RT (5.2)

C is concentration of the product,t is time,ko
1 andko

2 the reaction constants for the two stages and are both
a function of temperature,T . The order of the reaction is given byn+m. R is the gas constant. It is further
assumed that the heat of reaction,Htot is evenly distributed as the reaction progresses. i.e.

∂H

∂t
= Htot

∂C

∂t
(5.3)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 63

5.1.1 Assumptions

It is assumed that only the forward reaction takes place. There is currently no mechanism in place to allow
for reversible reactions other than to specify two chemical reactions with reactants and products switched
and (possibly) new rate constants.

NOTE:R is currently assumed to be 8.314J/moloK which limits us to using MKS units. Consequently the
temperature must be the absolute temperature (oK), the activatione energies should be in consistent units
(J), and the the time and ratesk1, k2, should be consistent.

5.1.2 Interaction With Other Physics

The reaction propagation is calculated in each of the cells explicitly at the beginning of the heat transfer
solution and added to the enthalpy solution as a source term.

5.2 Algorithms

To allow for general reactions where we might not know the solution of the reaction equation, but rather only
the differential equation governing the reaction, we solve the reaction as a fractional change in concentration
during the time step∆t. This gives us:

∆C = ∆t [(k1 + k2 ∗ C(t)m)(Cmax − C(t))n]
k1 = ko

1 ∗ e−Ea
1 /RT

k2 = ko
2 ∗ e−Ea

2 /RT (5.4)

The above approach has the advantage of not needing the concentration history of the cells where the reaction
takes place. However, it is prone to errors if the time step is large or if the reaction occurs very fast relative
to the time step. Consequently for future models that may be added, where possible we will use the solution
to the differential equation rather than the differential equation itself to propagate the reaction.

Once we have∆C, we can then calculate the change in enthalpy,∆H, associated with this concentration
change.

This approach will not allow for chemical changes and phase changes to occur to thesamematerial in
any given time step, although different materials can undergo phase changes and chemical reactions, or the
reactants can be formed as a result of a phase change from some other material.

64 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 6

Solid Mechanics

The solid mechanics capability in TRUCHAS is described in this chapter. The current release can calculate
displacements, elastic stresses and both elastic and plastic strains for an isotropic material, including stresses
and deformations caused by temperature changes and gradients. The volume changes associated with solid
state phase changes can also be included in the solution. A variety of traction and displacement boundary
conditions can be specified, and this release includes sliding interfaces and contact, restricted to “small”
displacements. The model for plastic flow uses a flow stress that depends on strain rate and temperature with
no work hardening. Other material behavior such as porosity formation may be added in future versions of
the software.

6.1 Notation

A Control volume face area
A linear elastic operator
ai, bi, ci, di coefficients for tetrahedral linear interpolation
b, bi body force components
d displacement boundary condition value (scalar)
E Young’s modulus
eel elastic strain tensor
epc phase change strain tensor
ēpl effective plastic strain (scalar)
epl plastic strain tensor
eth thermal strain tensor
etot total strain tensor
G second Lame′ constant

LA-UR-08-0819 TRUCHAS Physics and Algorithms 65

J Jacobian matrix
Ni Shape functions for a cell or element
n̂, n̂i unit normal vector and components
P preconditioning matrix
r, s, t logical coordinates for element shape functions
r,ri right hand side vector for the linear elastic system
T temperature
Tref stress reference temperature
t time
u, ui, [u, v, w] displacement vector or components
xi or [x, y, z] global coordinates
α linear coefficient of thermal expansion
δij Kronecker delta
λ first Lame′ constant
ν Poisson’s ratio
φ a displacement component
ρ current density of the material (not accounting for thermal expansion)
ρ0 initial density of the material
σ Cauchy stress tensor
σ̄ Effective stress (second invariant ofσ, scalar)
σ′ deviatoric stress tensor
σth thermal stress tensor
τi traction components
τn traction component normal to the surface
θ temperature difference relative to a stress-free temperature

More notation specific to the mechanical threshold stress (MTS) model and the contact algorithm are listed
in Section6.2.5 and Section6.2.3. Unless otherwise indicated, repeated indices denote summation, i.e.
ekk ≡ e11 + e22 + e33.

6.2 Physics

6.2.1 Assumptions

The current solid mechanics implementation is an application of linear thermoelastic continuum mechanics
with small strain viscoplastic flow. It is assumed that the solid material is a continuum, and the discretized
strain field satisfies compatibility. The current formulation uses infinitesimal strains, and is therefore accu-
rate only for small strains and rotations. The material behavior is assumed to be linear elastic with isotropic

66 TRUCHAS Physics and Algorithms LA-UR-08-0819

J2 plasticity. The deformation is assumed to be quasi-static. Body forces and isotropic dilatation due to
phase change can be optionally included in the current implementation.

6.2.2 Equations

The basic conservation law to be satisfied is that of equilibrium (σij are stress components,xj are coordi-
nates,bi are body force components):

∂σij

∂xj
+ bi = 0 (6.1)

For isotropic elasticity:

σij = λeel
kkδij + 2Geel

ij (6.2)

whereλ andG are the first and second Lamé constants, respectively.

The strain tensoreel
ij is the elastic strain defined by decomposing the total strain into elastic, thermal, plastic

and phase change portions.

etot
ij = eel

ij + eth
ij + epl

ij + epc
ij (6.3)

The thermal strain is defined as

eth
ij = αδijθ (6.4)

whereα is the coefficient of thermal expansion, andθ is the temperature difference relative to a stress-free
reference temperature. For the case of a temperature dependent coefficient of thermal expansion, Equa-
tion 6.4becomes

eth
ij =

∫ T

Tref

α(T)δij dT (6.5)

The phase change strain is also assumed to be an isotropic expansion or contraction calculated from the
density change associated with the phase change. Assuming small strains, we use:

epc
ij =

[(
ρ0

ρ

) 1
3

− 1

]
δij (6.6)

The total strain is the infinitesimal strain tensor defined in terms of the displacement gradient:

etot
ij =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(6.7)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 67

whereui are material displacement components. The displacement field is approximated by a finite volume
discretization, which is described in Section6.3. The displacements at cell vertices are the primary solution
variables.

For isotropic thermo-elasticity with phase change, Equation6.2, Equation6.3, Equation6.5and Equation6.6
give

σij = λetot
kk δij + 2Getot

ij − (3λ + 2G)

(∫ T

Tref

α(T) dT +

[(
ρ0

ρ

) 1
3

− 1

])
δij (6.8)

The plastic strain is calculated from the users choice of viscoplastic model of the form

dēpl

dt
= f(σ̄, T) (6.9)

whereēpl is the effective plastic strain and̄σ is the second invariant of the stress tensor (J2), or effective
stress. The specific viscoplastic models available are described in Section6.2.5. The effective plastic strain
ēpl and effective stress̄σ are scalars, and the components of the plastic strain increment∆epl

ij are calculated
from the Prandtl-Reuss equations

∆epl
ij =

3
2

∆ēpl

σ̄
σ′ij (6.10)

whereσ′ij is the deviatoric stress and∆ēpl is the increment in effective plastic strain obtained by integrating
Equation6.9over a time step.

The deviatoric stress is the elastic stress tensor minus the hydrostatic component.

σ′ij = σij − δij(σkk/3) (6.11)

The plastic strain components are proportional to the deviatoric stress components, so the volumetric plastic
strain (epl

kk) is zero. Including plastic strains in the stress calculation gives

σij = λetot
kk δij + 2Getot

ij − (3λ + 2G)

(∫ T

Tref

α(T)dT +

[(
ρ0

ρ

) 1
3

− 1

])
δij − 2Gepl

ij (6.12)

68 TRUCHAS Physics and Algorithms LA-UR-08-0819

6.2.3 Boundary and Initial Conditions

6.2.3.1 Notation

u - the displacement vector for the entire domain
n̂ - a unit vector normal to and pointing away from the surface
~uj - the displacement vector (in ndim dimensions) for nodej
~fj - the force vector at nodej that is a function of the displacement vectoru and source terms
Λ - a contact function for a gap interface that is equal to 1 if the surfaces are in contact or penetrated

and equal to 0 if the surfaces are separated.

6.2.3.2 Boundary Conditions

Boundary conditions may be specified in terms of displacementsui or surface tractions. Since the primary
solution variables are displacements, specifying displacements as Dirichlet conditions is straight forward.
Tractionsτj are defined as a force per unit area on a surface or interface, and are related to the bulk stress:

τj = σij · n̂i (6.13)

whereτj are the traction components andn̂i are the surface normal components. The algorithm used in
TRUCHAS allows surface tractions to be specified directly on control volume faces. Displacements and
tractions can be specified in either global Cartesian coordinates or in the direction normal to the surface or
interface.

If a displacement normal to the surface is specified, the constraint equation is

~u · n̂ = d (6.14)

whereu is the displacement vector,n is the unit normal vector at the node where the constraint is applied,
andd is the scalar displacement value with a positive value in the direction pointing outward from the body.

Since the equilibrium equations for a node are for a force vector in three dimensions, the general case
requires that the three equations for a node be decomposed into components normal and tangential to the
surface. The equilibrium equations can be expressed as

~fj = 0 (6.15)

The displacement constraint can be applied by taking the component of the vector orthogonal to the specified
displacement and adding the portion satisfying Equation6.14:

([I]− [n̂n̂T])~fj − c[n̂n̂T](~uj − dn̂) = 0 (6.16)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 69

where [n̂n̂T] is the 3 × 3 orthogonal projection matrix onto the normal direction, and[I] − [n̂n̂T] the
orthogonal projection onto the plane normal ton̂.

If a traction boundary condition normal to the surface is specified, the traction components in Cartesian
coordinates are given by

τi = τnn̂i (6.17)

whereτi is the traction component in Cartesian coordinates,τn is the specified normal traction andn̂i is the
the i component of the unit normal vector. Ifτn is positive, the resulting force is in the direction pointing
outward from the body.

6.2.3.3 Sliding Interfaces and Contact

Small displacement sliding interfaces can be specified, with or without a contact algorithm. The interface
is defined with gap elements, that are currently constructed by duplicating mesh nodes and element faces
on a surface and constructing elements of zero thickness by connecting the coincident faces and nodes in
the mesh definition. In the future, elements of finite thickness may be designated as gap elements. The gap
elements are currently only used to provide connectivity information to the sliding and contact algorithms,
facilitating the parallel implementation.

Sliding interfaces specified without contact (designated “normal constraint” interfaces) allow coincident
nodes across an interface to move relative to each other tangential to the surface but not normal to the
surface. This is implemented by treating the nodes on the interface as if they are on a free surface and
adding constraints that are dependent on the displacement vector of the coincident node on the other side of
the interface. The constraints must satisfy two conditions: (1) the relative normal displacement is zero. For
coincident nodesj andk on either side of the interface, and unit normal vectorn̂:

(~uk − ~uj) · n̂ = 0 (6.18)

or in vector form

[n̂n̂T](~uk − ~uj) = 0 (6.19)

and (2) the sum of the forces normal to the interface on the two nodes must be zero:

[n̂n̂T](~fj + ~fk) = 0 (6.20)

To implement the sliding constraint, the equations for the force vectors acting on nodesj andk can be
modified to be (for̂n pointing away from nodej):

([I]− [n̂n̂T])~fj + [n̂n̂T](~fj + ~fk) + c[n̂n̂T](~uk − ~uj) = 0 (6.21)

([I]− [n̂n̂T])~fk + [n̂n̂T](~fj + ~fk) + c[n̂n̂T](~uj − ~uk) = 0 (6.22)

70 TRUCHAS Physics and Algorithms LA-UR-08-0819

or

~fj + [n̂n̂T](~fk + c(~uk − ~uj)) = 0 (6.23)
~fk + [n̂n̂T](~fj + c(~uj − ~uk)) = 0 (6.24)

The nodal equations and constraints are in the form of the equation for a node on a free surface plus the
force applied by the node across the interface plus a term that penalizes penetration or separation of the two
nodes normal to the interface. The constantc is chosen to scale the penalty function appropriately.

Equation6.24 can be modified with a contact functionΛ to make the normal constraint non-symmetric,
penalizing penetration but allowing the nodes to separate.Λ is equal to 1 if the surfaces are in contact or
penetrated and equal to 0 if the surfaces are separated. EvaluatingΛ at a node is an important implementation
issue.

~fj + Λ[n̂n̂T](~fk + c(~uk − ~uj)) = 0 (6.25)
~fk + Λ[n̂n̂T](~fj + c(~uj − ~uk)) = 0 (6.26)

6.2.3.4 Initial Conditions

The temperature field is required for the thermoelastic solution, and initial temperatures that are specified in
the input file or overwrite routine are used as initial conditions. A stress-free reference temperature must be
specified for each material in the problem.

6.2.4 Interaction with Other Physics

The solid mechanics solution depends on the temperature field and volume fractions of the various solid
phases. The volume fractions and temperature field at the beginning and end of the time step are used to
calculate the thermal strain increments and plastic strain increments. Calculation of the phase change strain
requires the change in volume from the enthalpy calculation. None of the other physics capabilities are
dependent on the stresses, strains and displacements in this release.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 71

6.2.5 Material Properties

6.2.5.1 Linear Elasticity

The isotropic thermoelastic model requires two elastic constants and a linear coefficient of thermal expan-
sion. These properties are generally temperature dependent, and can be specified as functions of temperature
in the input. Currently the elastic constants are specified as the Lamé constantsλ andG, as defined in Equa-
tion 6.8. The relationship between Lamé constants and Young’s modulusE and Poisson’s ratioν are given
here:

λ =
Eν

(1 + ν)(1− 2ν)
(6.27)

G =
E

2(1 + ν)
(6.28)

6.2.5.2 MTS Viscoplastic Model

The mechanical threshold stress (MTS) model [24] was developed to model plastic deformation of metals
based on thermally activated deformation mechanisms. Although this model may not be the most appropriate
for small strains and high temperatures, data for a number of materials of interest to the TELLURIDEproject
have been fitted to this model.

If we ignore any terms related to work hardening, the equations for the MTS model with a strain rate and
temperature dependent yield strength are as follows:

σ

µ
=

σa

µ
+ Si(ε̇, T)

σ̂i

µ0
(6.29)

µ = µ0 −
D

exp
(

T0
T

)
− 1

(6.30)

Si(ε̇, T) =

{
1−

[
kT

µb3g0i
ln
(

ε̇0i

ε̇

)] 1
qi

} 1
pi

(6.31)

The algorithm in TRUCHAS requiresε̇ as a function ofT andσ. Equation6.29and Equation6.31can be
solved forε̇ to give

ε̇ =
ε̇0i

exp
{[

1−
(

µ0

µσ̂i
(σ − σa)

)pi
]qi µb3g0i

kT

} (6.32)

72 TRUCHAS Physics and Algorithms LA-UR-08-0819

The terms in the equations and corresponding TRUCHAS input variables are as follows:

Variable Description Input Variable
σ Effective flow stress used in Equation6.9 not an input variable
ε̇ Effective plastic strain rate used in Equation6.9 not an input variable
µ Temperature dependent shear modulus not an input variable
T Temperature not an input variable
µ0 Reference shear modulus MTSmu 0
σa Athermal stress term MTSsig a
σ̂a Stress term for thermally activated yield stress MTSsig i
D Constant for temperature dependent shear modulus MTSd
T0 Reference temperature for shear modulus MTStemp0
k Boltzmann’s constant in appropriate units MTSk
b Burger’s vector magnitude MTSb
g0i Dimensionless constant MTSg 0i
ε̇0i Reference strain rate MTSedot0i
pi Dimensionless constant MTSp i
qi Dimensionless constant MTSq i

6.2.5.3 Power Law Viscoplastic Model

The MTS model is not generally valid at high temperatures (relative to the melting point) and low strain
rates. Accurate data for metals in this regime are often not available. A simple power law model is available
to fit or estimate the plastic behavior in this regime. The relation between strain rate, stress and temperature
is of the form

ε̇ = Aσ̄n exp
−Q

RT
(6.33)

whereA, n andQ are material parameters.

6.3 Algorithms

6.3.1 Discretization

The discretization method used to solve Equation6.8or Equation6.12is based on a node-centered control
volume discretization [4, 5]. This algorithm was chosen because it allows the efficient use of the existing

LA-UR-08-0819 TRUCHAS Physics and Algorithms 73

mesh data structures and parallel gather-scatter routines. Control volumes are constructed for each node or
cell vertex using data from the mesh for fluid flow and heat transfer. Each cell is decomposed into sub-
volumes with faces defined by connecting cell centroids, face centroids and edge midpoints, as shown in
Figure6.1.

Control Volume Faces

8 node hex

Prism (degenerate hex)

Figure 6.1: Faces defining control sub-volumes for a hex cell and a degenerate prism cell.

Figure 6.2: Faces defining control volumes for a node surrounded by hex cells and a node on the surface of
a regular hex mesh.

Combining the faces of the sub-volumes from all cells that share a given node gives the surface of a control
volume for that node. Control volumes for nodes that are on the surface of the mesh are enclosed by
dividing the external cell face into smaller faces bounded by the internal control volume faces and cell
edges. Examples for a structured hex mesh are shown in Figure6.2.

The simplest derivation for the method used in TRUCHAS is to start with the equilibrium equation, Equa-
tion 6.1, and integrate over the control volume:∫

V

∂σij

∂xj
dv = −

∫
V

bi dv (6.34)

74 TRUCHAS Physics and Algorithms LA-UR-08-0819

The integral on the left hand side can be converted to a surface integral using the divergence theorem,∫
V

∂σij

∂xj
dv =

∫
S

σij · n̂j ds (6.35)

where the integral is now defined over the surface of the control volume.

Combining with Equation6.12, moving the thermal stresses and phase change stresses to the right hand side
gives ∫

S
(λetot

kk δij + 2G(etot
ij − epl

ij)) · n̂j ds =∫
S

[(∫ T

Tref

α(T) dT +

[(
ρ0

ρ

) 1
3

− 1

])
δij

]
· n̂j ds−

∫
V

bi dv (6.36)

for each control volume. Bailey and Cross [5] claim that Equation6.36can also be derived from a weighted
residual method where the weight function is unity within the control volume and zero elsewhere.

6.3.2 Displacement Gradients

The total strainetot
ij is evaluated at the face centroids by standard finite element techniques for tri-linear

hexahedral elements. The displacement field within an mesh cell is related to nodal displacements by

φ(r, s, t) =
m∑

i=1

Ni(r, s, t)φi (6.37)

whereφ(r, s, t) is a displacement component at logical coordinatesr, s, t within a reference element,Ni are
shape functions at those same coordinates, andφi are the corresponding displacements at the nodes. The
global coordinatesx, y, z are related tor, s, t through the Jacobian matrix

J =


∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

 (6.38)

where

∂x

∂r
=

m∑
i=1

∂Ni

∂r
xi etc. (6.39)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 75

After invertingJ, displacement gradient components in global coordinates can be calculated:


∂φ
∂x

∂φ
∂y

∂φ
∂z

 = J−1


∂φ
∂r

∂φ
∂s

∂φ
∂t

 (6.40)

6.3.3 Solution Algorithm for Quasi-Static Stresses and Strains

The left hand side of Equation6.36 is evaluated from the strains at the centroid of each control volume
face and the normal at the face centroid using a single quadrature point. A linear thermo-elastic solution is
computed on initialization if solid mechanics is active. The initial solution uses either the Newton-Krylov
or accelerated inexact Newton nonlinear solver for the displacements.

The solution algorithm computes all stress and strain quantities at all integration points for all cells. These
quantities are also recalculated at cell centroids for output purposes only.

6.3.3.1 Initialization

Since the current implementation is a small strain Lagrangian formulation, the Jacobians are only calculated
once upon initialization. Initialization for the solid mechanics solution includes the following:

• Calculate and store the areaA, centroid coordinates and normal vectorn̂i for each control volume
face in each cell.

• Calculate and store the inverse of the Jacobian matrix,J−1 for each control volume face in each cell.

• Identify external cell faces that have traction boundary conditions specified, and calculate areasA and
normal vectors for control volume faces on those cell faces.

• Identify nodes for displacement boundary conditions.

• If gap elements are present, identify pairs of nodes for interface and contact constraints. Also calculate
and store the various normal and tangential vectors for the contact algorithm.

76 TRUCHAS Physics and Algorithms LA-UR-08-0819

6.3.3.2 Initial Thermo-Elastic Solution

The solvers used in TRUCHASdo not require the formation of a stiffness matrix, except for preconditioning,
as described in Section6.3.4. The solution method for the initial linear thermo-elastic stresses, strains and
displacements is as follows:

• Calculate the source terms that do not depend on the displacement vector in Equation6.36, denoted
asr:

– For each cell, calculate the thermal stress contribution from the cell temperature:

σth
ij δij = (3λ + 2G)

(∫ T

Tref

α(T) dT

)
(6.41)

– For each cell, calculate the phase change stress contribution from the volume change calculated
as part of the enthalpy solution:

σpc
ij δij = (3λ + 2G)

[(
ρ0

ρ

) 1
3

− 1

]
(6.42)

– Accumulate the right hand side surface integrals for each displacement componenti for each
node for each cell by summing over the number of control volume faces for the node (nfaces).
Using values at the control volume face centroid (with no summation over index i):

ri =
nfaces∑
m=1

(σth
ii + σpc

ii)n̂m
i Am (6.43)

– Add contributions from traction boundary conditionsτi:

ri = ri +
nfaces∑
m=1

τm
i Am (6.44)

– Add gravitational body force terms if required

bi = Vnρn~gi (6.45)

whereVn is the volume of the control volume for the node,ρn is the average density of the
control volume for the node and~g is the gravitational acceleration vector

– Enforce displacement, sliding interface and contact boundary conditions described in Section6.2.3.2
and Section6.2.3.3. The detailed equations for the supported combinations of displacement,
sliding and contact constraints are in AppendixK.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 77

– Scatter the contributions to the right hand side for all cells to the nodes.

• Call the non-linear solver package to calculate displacements at the nodes. The non-linear residual
routine is called by the solver routines. Although the initial solution is a linear elastic solution, if
contact boundary conditions are specified, the problem is non-linear.

• Calculate the total strain field at the cell centroid and at each integration point in each cell from the
displacements. (Equation6.7).

• Subtract the thermal and phase change strains to get the elastic strain:

eel
ij = etot

ij − αθδij (6.46)

• Calculate the elastic stress at the cell centroid and at each integration point in each cell from the
displacements using Equation6.2.

• Calculate the deviatoric stress using Equation6.11.

• Calculate the effective stress at the cell centroid and at each integration point in each cell using

σ̄ =
[(

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2
12 + σ2

13 + σ2
23)
)
/2
] 1

2

(6.47)

• Calculate and store the plastic strain rate at the cell centroid and at each integration point in each cell.

6.3.3.3 Non-Linear Thermo-Elastic-Viscoplastic Solution

After the initial linear thermoelastic solution, it is assumed that the Equation6.36is non-linear with material
properties that may be temperature dependent. The solution procedure for each time step is as follows:

• Store the elastic stress, plastic strain and total strain components for each integration point for each
cell from the initial solution or the previous time step.

• Calculate the deviatoric stress at each integration point using Equation6.11.

• Calculate the effective stress using Equation6.47.

• Calculate and store the portion of the residual that does not depend on the displacement field. This
currently includes the thermal strain terms, phase change strain terms. These terms are also modified
by the displacement, sliding and contact constraints.

78 TRUCHAS Physics and Algorithms LA-UR-08-0819

• Call the non-linear solver to calculate the displacement field. The non-linear solver calls routines for
the residual calculation and possibly a numerical approximation of the Jacobian matrix-vector product
as described below. The stresses and strains at the integration points are updated automatically when
the residual is computed for the convergence check.

• Calculate the total strain, plastic strain, elastic stress, and plastic strain rate at the cell centroids.

6.3.3.4 Residual Calculation:

The accelerated inexact Newton and Newton-Krylov methods both require the calculation of the solution
residual for a given displacement vector. The residual is given by

F(u) =
∂σij

∂xi
+ b (6.48)

whereσij is given by Equation6.12. The residual is calculated by evaluatingσij at each integration point
and integrating over the control volume as for the linear elastic solution.

Fj(u) =
nfaces∑
m=1

σm
ij n̂m

i Am + bj (6.49)

Note thatσij is calculated from the elastic strain, which requires calculating the total strain, thermal strain
and plastic strain at each control volume face.

eel
ij = etot

ij − eth
ij − epl

ij − epc
ij (6.50)

The total strainetot is calculated from the displacement field as described above, and the thermal and phase
change strain terms are computed and stored once for each time step. The plastic strain is calculated by
integrating the plastic strain rate at each integration point over the time step. The integration of the plastic
strain is implicit, assuming a linear change in total strain over the time step and a constant straining direction
equal to that at the beginning of the time step. If the plastic strain rate is small enough a midpoint method is
used to calculate an average strain rate. Otherwise an ODE integrator (BDF2) is used to accurately integrate
the plastic strain over the time step at an integration point.

6.3.3.5 Boundary Conditions

Traction boundary conditions are applied directly to the control volume faces on the boundary by substituting
τj for (σijn̂i) in Equation6.49.

Displacement boundary conditions in Cartesian coordinates are applied by replacing the equations for the
node with Equation6.16. Sliding and contact interface conditions are imposed according to Equation6.24

LA-UR-08-0819 TRUCHAS Physics and Algorithms 79

and Equation6.26. The details of the projections of the force vectors for displacement and interface bound-
ary conditions are in AppendixK.

6.3.4 Preconditioning

For efficient convergence the nonlinear solvers require an approximation of the Jacobian matrix (∂F
∂u) for

preconditioning. Currently TRUCHAS uses an approximation of the elastic stiffness matrixA for precondi-
tioning of the linear and nonlinear solvers. The method for approximatingA developed for TRUCHAS uses
the same control volumes and surface integral as for the full operatorA, but the displacement gradients are
approximated using only neighboring nodes connected by edges. Instead of using the full tri-linear interpo-
lation functions and all eight nodes from a cell, three adjacent nodes from a single cell are used to construct
a tetrahedron (Figure6.3), where stresses are to be calculated for the surface of the volume surrounding the
node labeled 1.

3

4

2

2

34

1

1

Figure 6.3: Definition of tetrahedra for displacement gradient approximation.

The displacement components (represented byu, v, w) are assumed to vary linearly over the tetrahedron:

u =
4∑

i=1

(ai + bix + ciy + diz)ui

v =
4∑

i=1

(ai + bix + ciy + diz)vi

w =
4∑

i=1

(ai + bix + ciy + diz)wi (6.51)

80 TRUCHAS Physics and Algorithms LA-UR-08-0819

The displacement gradients are then constant over the element,

∂u

∂x
=

4∑
i=1

biui

∂u

∂y
=

4∑
i=1

ciui

...

∂w

∂z
=

4∑
i=1

diwi (6.52)

where(u1, u2, u3, u4) are theu displacements at nodes 1-4 in Figure6.3, etc. The coefficients(ai, bi, ci, di)
are calculated from the coordinates at nodes 1-4, as described in various finite element references, such
as [25]. The elastic equilibrium equationAu = b can then be expanded using an approximation ofA in
terms of(ai, bi, ci, di) and the control volume face areas and normals. A single stress value based on the
tetrahedron strain gradients is used for all control volume faces associated with node 1 in that cell.

This procedure results in a matrixP, an approximation toA. For hexahedral meshesP usually has a much
smaller bandwidth thanA. If the mesh is fixed, most of the work to calculateP (evaluation ofai, bi, ci, di)
is done once at the beginning of the simulation. Ifλ andG are temperature dependent or if material volume
fractions in a cell change,P must be recalculated.

The linear solver package usesP for preconditioning of the linear system. Currently the only precondition-
ing methods for solid mechanics are symmetric successive over-relaxation (SSOR) and diagonal scaling.
SSOR generally results in a reduction of the number of iterations by a factor of 3 or 4 compared to no pre-
conditioning. The preconditioning routine itself is quite efficient, and the reduction in computation time is
substantial.

For tetrahedral meshesP should be equal toA. Computations on tetrahedral meshes can be quite efficient,
but the accuracy of linear tetrahedra are quite poor compared to tri-linear hexes for the same number of
nodes. It should also be noted that tetrahedral meshes generally have a much larger number of cells for a
given number of nodes. Since the algorithms in TRUCHAS generally loop over cells for the construction of
A andP, the benefits of tet meshes are reduced.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 81

82 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 7

Electromagnetics

This chapter presents the electromagnetic (EM) modeling capabilities in TRUCHAS, and discusses the solu-
tion procedure used for EM field equations in detail. Although the core EM solver is reasonably general, its
current application within TRUCHAS is narrowly focused on treating induction heating problems—problems
where a workpiece is surrounded by an induction coil that generates a low-frequency magnetic field. This
focus has guided the special manner EM is coupled to the other physics in TRUCHAS. While there are a
number of limitations in this initial release, the current induction heating capability is still quite useful, and
will be improved in future releases. It is also expected that the EM modeling capabilities will be expanded
in the future to include other phenomena, such as magnetic stirring of fluids due to Lorentz forces.

7.1 Physics

7.1.1 Assumptions

The EM implementation is based on a direct solution of Maxwell’s equations in the time domain. The
material parameters—permittivity, permeability, and electrical conductivity—are assumed to be isotropic
and linear in the fields. Imposed currents within the computational domain are not presently treated.

Other assumptions are:

Low frequency driving field: The frequency of the magnetic driving field is assumed to be low in the sense
that its wavelength is large compared to the diameter of the computational domain. This is due to the way
in which the driving fields are constructed. The displacement current term in Maxwell’s equations, which is
normally dropped in the low-frequency regime, is retained in this implementation.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 83

Separation of time scales:The time scale associated with the EM fields, which is inversely proportional
to the driving field frequency, is assumed to be much shorter than the time scale associated with the other
physics, particularly heat conduction. It is this assumption which allows the special coupling used in this
implementation. So while we require a low-frequency driving field, its frequency must not be too low.

External induction coil: Because imposed currents are not treated in the present implementation, it is
not possible to directly model induction coils within the computational domain. Instead, the influence of
the coil is captured through boundary conditions on the magnetic field. What is assumed is that there is
sufficient free-space separation between the coil and workpiece, so that the boundary of the computational
domain may be placed at an intermediate point far enough away from the workpiece so that the reaction
fields induced in the workpiece are not unduly affected by the boundary, yet still excluding the coil itself.

Tetrahedral mesh: The current numerical procedure used to solve the EM field equations requires a tetra-
hedral mesh. Thus TRUCHAS now operates with a pair of meshes: a secondary tet mesh used for the EM
calculations and the primary mesh used elsewhere in TRUCHAS. Quantities are interpolated from one mesh
to the other as needed.

Fixed domain type: The computational domain is required to be one of a few specific types. This is due to
the current inability to associate boundary conditions to specific portions of the boundary of the mesh used
for the EM calculation. This limitation will be removed in a future release. This issue is discussed in more
detail later in this section.

7.1.2 Equations

The evolution of general time-varying EM fields is governed by Maxwell’s equations, which in SI units can
be written as

∂ ~B

∂t
= −∇× ~E, (Faraday’s law), (7.1)

∂ ~D

∂t
+ ~J = ∇× ~H, (Ampere-Maxwell law), (7.2)

∇ · ~D = ρ, (Gauss’ electric law), (7.3)

∇ · ~B = 0, (Gauss’ magnetic law). (7.4)

Here ~E is the electric field intensity,~H is the magnetic field intensity,~B is the magnetic flux density,~D is
the electric flux density,~J is the electric current density, andρ is the electric charge density. In addition we
have a continuity equation governing conservation of charge,

∂ρ

∂t
+∇ · ~J = 0. (7.5)

84 TRUCHAS Physics and Algorithms LA-UR-08-0819

The fields are connected by the constitutive relations

~D = ε ~E, (7.6)

~B = µ ~H, (7.7)

~J = σ ~E + ~Jsrc, (7.8)

where the parametersε, µ, andσ denote, respectively, the permittivity, permeability, and conductivity of the
medium. Currently we consider only isotropic materials, where these parameters are scalars. The field~Jsrc

denotes an imposed current density. However, in this release we assume~Jsrc ≡ 0; this will be relaxed in a
future version.

Finally, the Joule heat,q, which couples the electromagnetics to heat conduction, is simply computed as

q = σ‖ ~E‖2. (7.9)

This is a power density.

7.1.3 Boundary Conditions

Internally to TRUCHAS, either the tangential component of the electric field or the tangential component of
the magnetic field may be specified on the boundary. Specifically, suppose the boundary is partitioned into
two disjoint parts,Γ1 andΓ2, either one possibly empty. Then the boundary conditions are

n̂× ~E = n̂× ~Eb, onΓ1, (Type 1) (7.10)

n̂× ~H = n̂× ~Hb, onΓ2, (Type 2) (7.11)

wheren̂ denotes the outward normal to the boundary, and~Eb(x, t) and ~Hb(x, t) are given boundary data.

Currently, however, there is no means for the user to associate boundary conditions to specific portions of
the boundary of the secondary tetrahedral mesh used for the EM calculation. As a result the domainΩ is
limited to three special types that are typical of basic induction heating problems:

• Full cylinder,Ω = {(x, y, z) | x2 + y2 ≤ r2, z1 ≤ z ≤ z2}

• Half cylinder,Ω = {(x, y, z) | x2 + y2 ≤ r2, x ≥ 0, z1 ≤ z ≤ z2}

• Quarter cylinder,Ω = {(x, y, z) | x2 + y2 ≤ r2, x, y ≥ 0, z1 ≤ z ≤ z2}

The half and quarter cylinder domains are assumed to be associated with a full cylinder problem that pos-
sesses half and quarter symmetry, respectively. If present, the symmetry boundaries∂Ω ∩ {x = 0} and
∂Ω ∩ {y = 0} are assigned toΓ1 with ~Eb = ~0. This is consistent with the symmetry that allows a globally
azimuthal electric field. The remaining portion of the boundary is assigned toΓ2, and several pre-defined
choices for~Hb may be selected.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 85

7.1.3.1 Magnetic driving fields.

The current choices for~Hb all correspond to the magnetic field produced by a cylindrical coil, of some
configuration, that carries a sinusoidally varying current. They may be expressed in the form

~Hb(x, t) = I sin(2πft)~h(x), (7.12)

whereI is the peak current per unit length,f is the linear frequency, and~h(x) is a vector field that depends
on the geometric configuration of the coil.

7.1.4 Interaction With Other Physics

The EM field solution is independent of all other physics, except temperature, and that only if the EM
material parameters are temperature dependent. Heat conduction is coupled to EM through the Joule heat
which serves as a volumetric heat source in the enthalpy equation. The coupling between the two physics is
greatly simplified, however, by the fundamental assumption that the time scale associated with the EM fields
(inversely proportional to the frequency of the magnetic driving field) is much shorter than the time scale
associated with heat conduction. In this case, the EM field persists in a periodic steady-state equilibrium
that continually adjusts to the slowly evolving temperature field. To find this steady state, it suffices to
solve Maxwell’s equation to the periodic steady state, starting from arbitrary initial conditions (zero fields,
for example), while temporarily freezing all other physics. Finally, the rapid temporal fluctuations in the
derived Joule heat is removed by averaging over a cycle, yielding the time-averaged heat source used in heat
conduction.

7.1.5 Material Properties

The material parameters relevant to EM are the permittivityε, permeabilityµ, and electrical conductivityσ.
The first two are expressed in terms of their free-space values,ε = ε0εr andµ = µ0µr, whereεr andµr

are the relative permittivity and permeability, respectively. The parametersεr, µr, andσ are specified in the
material input and may be temperature dependent. The free-space parametersε0 andµ0 are pre-assigned
SI-unit values, but these may be overridden if necessary.

86 TRUCHAS Physics and Algorithms LA-UR-08-0819

7.2 Algorithms

7.2.1 The Whitney Complex

Let Th be a discretization of the domainΩ into a face-conforming tetrahedral mesh. LetN , E , F , andK
denote the sets of nodes, oriented edges and faces, and tetrahedral cells in the mesh. Each edge and face
appears just once with a fixed but arbitrary orientation.

We define the Whitney family of finite element spacesW0, W1, W2, andW3 that are associated with
the nodes, edges, faces, and cells ofTh. Let φn(x) denote the familiar continuous, piecewise-linear, ‘hat’
function that equals 1 at noden, and 0 at all other nodes. Then for each oriented edgeε = [m,n] define the
vector function

~w(1)
ε (x) = φm∇φn − φn∇φm, (7.13)

and for each oriented facef = [l,m, n] define the vector function

~w
(2)
f (x) = 2(φl∇φm ×∇φn + φm∇φn ×∇φl + φn∇φl ×∇φm). (7.14)

These functions have the following properties (see [26]):

• ~w
(1)
ε is tangentially continuous, and~w(2)

f is normally continuous across each face.

• The tangential component of~w(1)
ε is constant on each edge, its circulation along edgeε equals 1, and

equals 0 for all other edges.

• The normal component of~w(2)
f is constant on each face, its flux across facef equals 1, and equals 0

for all other faces.

• The sets{~w(1)
ε }ε∈E and{~w(2)

f }f∈F are linearly independent.

We then letW1 = span{~w(1)
ε } andW2 = span{~w(2)

f }. The degrees of freedom (DOF) forW1 are the
circulations of a vector field along the oriented edges, and the DOF for forW2 are the fluxes of a vector
field across the oriented faces. For completeness we also letW0 = span{φn}, whose DOF are simply the
nodal values of a scalar field, and letW3 denote the space of piecewise constant functions with respect to
Th, whose DOF are the total masses of a scalar field on the cells. (We could just as well used the constant
cell values as the DOF—it’s just a matter of a change in basis.)

The functions inW0 are continuous, hence∇u is defined for allu ∈ W0; that is,W0 is grad-conforming,
W0 ⊂ H(Ω,∇). Similarly, it follows from the above properties thatW1 is curl-conforming,W1 ⊂
H(Ω,∇×), andW2 is div-conforming,W2 ⊂ H(Ω,∇·). Moreover, it can be shown (non-trivial) that

LA-UR-08-0819 TRUCHAS Physics and Algorithms 87

∇(W0) ⊂ W1,∇× (W1) ⊂ W2, and∇ · (W2) ⊂ W3. These key properties of the Whitney complex are
summarized in the following diagram:

W0 ∇−−−−−→W1 ∇×−−−−−−→W2 ∇·−−−−−→W3 (7.15)

In particular it follows that∇× (∇u) ≡ 0 for all u in the finite dimensional spaceW0, and∇· (∇×~v) ≡ 0
for all ~v inW1.

7.2.2 Spatial Discretization

Not all of the equations (7.1)–(7.5) are independent. Equation (7.4) follows from (7.1) provided that∇· ~B =
0 at the initial time. Equation (7.5) follows from (7.2) and (7.3). Moreover, since the charge density is of
no direct interest, we ignore (7.3), other than to require that∇ · ~D = ρ at the initial time. These conditions
on the initial fields may be trivially satisfied by considering a charge-free initial state that is free of fields, as
we do here. What remains then are the first order curl equations (7.1) and (7.2), which after eliminating~D,
~H, and ~J , become

∂ ~B

∂t
= −∇× ~E, (7.16)

ε
∂ ~E

∂t
+ σ ~E = ∇× 1

µ
~B. (7.17)

Let ~Bh ∈ W2 and ~Eh ∈ W1 be finite element approximants to~B and ~E, respectively. Because of the
inclusion∇× (W1) ⊂ W2, Faraday’s law (7.16) may be discretized directly,

∂ ~Bh

∂t
= −∇× ~Eh. (7.18)

Ampere’s law (7.17), however, must be interpreted weakly. The weak-form equation is∫
Ω

(
ε
∂ ~Eh

∂t
+ σ ~Eh

)
· ~w =

∫
Ω

1
µ

~Bh · ∇ × ~w +
∫

Γ2

~w · n̂× ~Hb, for all ~w ∈ W1. (7.19)

The type 2 boundary condition (7.11) is imposed naturally through the boundary integral. The type 1
boundary condition (7.10) on the tangential component of~E is also easily imposed on~Eh whose DOF
are the circulation of the electric field along the edges.

The discrete system (7.18) and (7.19) can be recast in matrix form. Suppose the edges and faces have been
enumerated,E = {εj}Nε

j=1 andF = {fj}
Nf

j=1, and write~Eh and ~Bh in terms of their respective bases,

~Eh(x, t) =
Nε∑
j=1

ej(t) ~w(1)
εj

(x), (7.20)

~Bh(x, t) =
Nf∑
j=1

bj(t) ~w
(2)
fj

(x). (7.21)

88 TRUCHAS Physics and Algorithms LA-UR-08-0819

Sete(t) = (e1, . . . , eNε) andb(t) = (b1, . . . , bNf
). Then (7.18) and (7.19) can be written

ḃ = −Ce, (7.22)

M1(ε)ė + M1(σ)e = CT M2(µ−1)b + g(t), (7.23)

whereC is the matrix representation of the curl operator as a map fromW1 toW2, g(t) stems from the
boundary integral, andM1(ε), M1(σ), andM2(µ−1) are mass matrices defined by

Mk(ω) =

((∫
Ω

~w
(k)
i · ~w(k)

j ω(x)dx

))
(7.24)

7.2.3 Time Discretization

We discretize the time derivatives in (7.22) and (7.23) using the trapezoid rule. Using superscripts to denote
the time level, and a time step of∆t we obtain

bn+1 − bn = −∆t
2 C(en+1 + en), (7.25)

M1(ε)(en+1 − en) + ∆t
2 M1(σ)(en+1 + en) =

∆t
2 CT M2(µ−1)(bn+1 + bn) + ∆t

2 (gn+1 + gn)
(7.26)

As an implicit method, it allows us to take time steps whose size is of the order of the temporal variation
of the magnetic driving field, which is tremendously larger than the CFL stability condition imposed on an
explicit method. Moreover, the trapezoid rule has the very desirable property that the equation of global
energy conservation is exactly discretized.

To solve this system we first eliminatebn+1 from (7.26) using (7.25), to obtain[
M1(ε) + ∆t

2 M1(σ) +
(

∆t
2

)2
CT M2(µ−1)C

]
en+1 =[

M1(ε)− ∆t
2 M1(σ)−

(
∆t
2

)2
CT M2(µ−1)C

]
en+

∆tCT M2(µ−1)bn + ∆t
2 (gn+1 + gn) (7.27)

The solutionen+1 of this equation is then substituted into (7.25) to obtainbn+1.

7.2.4 Linear Solution

The coefficient matrix of (7.27) is symmetric, positive-definite, and we use the conjugate gradient method to
solve the system. It is, however, extremely poorly conditioned when taking the relatively huge time steps we
require. This is due to the fact that the termCT M2(µ−1)C , which dominates in the free-space region where

LA-UR-08-0819 TRUCHAS Physics and Algorithms 89

σ = 0, has a large nullspace. As a result, the convergence rate is very poor using symmetric Gauss-Seidel
(GS) as a preconditioner. To remedy this we have adapted a relaxation scheme proposed by Hiptmair [27]
for use as a preconditioner. In the following algorithm,G denotes the matrix representation of the gradient
operator as a map from the finite dimensional spacesW0 toW1.

Hiptmair Preconditioning for Ae = f :

1. Symmetric GS step forAe = f (with 0 initial guess)

2. Transfer residual to nodes:r′ ← GT (f −Ae)

3. Symmetric GS step onA′e′ = r′, A′ ≡ GT AG

4. Correct edge based solution:e← e + Ge′

5. Final symmetric GS step onAe = f to symmetrize.

90 TRUCHAS Physics and Algorithms LA-UR-08-0819

Chapter 8

Parallelism

This chapter presents the the parallel programming model in TRUCHAS.

8.1 Background on Parallel Programming

One goal of the TRUCHAScode is to run simulations with large data sets and complicated, coupled, physical
processes. To make that possible, we developed the code so that it can use multiple computer processors
simultaneously. Because multiple CPUs are working together, at the same time, on the same simulation,
this is called “parallel programming”. An introduction to many of the topics discussed in this section can be
found in [28].

8.1.1 Parallel Computer

A computer which supports paralell programming is often called a parallel computer. Many different types
of parallel computers are in use today. While all parallel computers have multiple CPUs, one major distinc-
tion between them is whether all the CPUs have direct access to a common memory system or not. CPUs
that share memory are “Shared Memory” parallel computers. Parallel computers where each CPU has direct
access to only its own, local, memory system are “Distributed Memory” computers. That is, the memory is
distributed among the CPUs.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 91

8.1.2 Shades of Grey

Shared memory and distributed memory parallel computers represent two ends of a spectrum. Most modern
parallel computers fall somewhere in between. Large Silicon Graphics, Inc. (SGI) systems are “distributed,
shared memory”. On those systems, CPUs have their own memory system, so memory is distributed among
the processors. However, a combination of hardware and software allows any processor to directly read or
write the memory of any other processor. So the memory is both distributed and shared.

Many of the parallel computers are built as a cluster of processing nodes. The processing nodes may them-
selves be shared memory parallel computers. For instance, we sometimes run on a cluster of dual-processor
PCs. The Compaq computer system, the latest large scale supercomputer at Los Alamos, is a cluster of
shared-memory nodes.

8.1.3 Programming for Distributed Memory Parallel Computers

TRUCHASis developed to run on distributed memory parallel computers. Every interesting, modern parallel
computer can be efficiently used with that model. All non-local reading and writing of data is done through
explicit library calls. (The library may make use of the fact that high-speed, shared memory hardware is
available and deliver high performance, but TRUCHASdoes not assume that exists.)

There are some disadvantages to limiting ourselves to a distributed memory model. One significant disad-
vantage is that it is often easier to program for shared memory systems than for distributed memory systems.
Another disadvantage is that shared memory systems admit higher performance algorithms than distributed
memory systems. So, by rejecting a shared memory programming model we are making our development
task harder, and potentially decreasing our performance.

We decided that these disadvantages were outweighed by the portability we get by assuming only distributed
memory. We can run on cheaper systems, since shared memory hardware is expensive. So TRUCHAScan run
on inexpensive clusters of PCs. Also, there has not yet emerged an ubiquitous shared memory programming
model that delivers high performance on large systems across vendors. Our portability would be limited if
we assumed one vendor’s particular shared memory paradigm.

8.2 SPMD Programming Model

TRUCHASuses the SPMD (Single Program, Multiple Data) programming paradigm. We write our code using
common, single processor programming languages (mostly FORTRAN95), and make calls to a library to
move data between processors. The same executable runs on each processor (that’s the “Single Program”
part of SPDM). Each processor has different data (different regions of the mesh, for example), and hence

92 TRUCHAS Physics and Algorithms LA-UR-08-0819

computes different results (that’s the “Multiple Data” part of SPMD). Many of the algorithms for computing
across the processors are “data parallel algorithms” [29].

8.2.1 MPI

Of course, the different processors have to exchange data in order to execute the desired algorithms. For
instance, computing the gradient of a field for a cell requires field data from surrounding cells. The data
for those surrounding cells may be on different processors. Therefore, we need some way to transfer data
between processors. By choice we have limited ourselves to programming languages that do not know
anything about moving data between processors. Therefore, we need to use a special-purpose library. The
library we chose for Truchas is the Message Passing Interface (MPI) [30, 31, 32]. PVM is an alternative
communication library.

8.2.2 Communication Library: PGSLib

MPI provides the fundamental capability to move data from one process to another. For instance, the routine
MPI_Send sends a buffer of data from one processor to another. However, the MPI interface is at a

very low level - it refers to real or integer buffers, word sizes, and processor numbers. TRUCHASuses
a communication library, PGSLIB [33], which provides the abstractions appropriate for unstructed mesh
algorithms. For instance, PGSLIBprovides routines to gather data from all surrounding cells. A developer
using this routine does not have to concern themselves with the detail of where the surrounding cell data is
stored - local on the same processor, or on other processors.

PGSLIBprovides abstractions for all the functionality that might require interprocessor communication.
MPI routines are never called directly in TRUCHAS, only indirectly through PGSLIB . One nice benefit of
that is that PGSLIBprovides a “serial emulator”. That is, if somebody is running on a serial computer (that
is, they are using only a single processor), by linking with the serial version of PGSLIBthen they can avoid
using MPI altogether. That simplifies debugging, and also simplifies installation, since if you do not plan to
run on multiple processors there is no need to install MPI.

8.3 Developing Code In Truchas

In this section we review the fundamentals for developing code in Truchas, with exclusive emphasis on
assuring that the code will run properly in parallel.

There are two concepts, which, if kept clearly in mind, can assure that correct code is generated, in most

LA-UR-08-0819 TRUCHAS Physics and Algorithms 93

cases.

All code executes locally, on a single processor, except explicit calls into the PGSLIB library.

All processors must execute the same calls, in the same order, into PGSLIB.

Code which involves all the processors (calls into PGSLIB) is calledglobal. Code which involves only
a single processor is calledlocal. Hence, our parallel programming paradigm is often calledglobal–local
programming. The general flow of control involves mostly local code, interspersed with global calls into
PGSLIB.

8.3.1 What Is Local Data, and What Is Global Data?

Since we are assuming distributed memory, all data is “owned” by one and only one processor. However,
sometimes we want to perform global operations on what seems to be a single, global, data set.

Local data is data which is operated on only by a single processor. A temporary variable inside a loop is
local. Global data is a union of local data sets, together with a (possibly conceptual) description of how the
local data sets are ordered and joined.

For instance, scattering a scalar field,e.g.temperature, from cell centers to cell vertices is a global operation
on global data. The cell centers and the cell vertices are global data sets because we want to consider
the scatter operation on the whole mesh, regardless of how it may be distributed to different processors. We
consider that each processor contains the data for a portion of the mesh. Clearly, the scatter operation cannot
complete without all processors participating. The code for this example might be:

real, dimension(ncells):: Temperature
real, dimension(nnodes):: Node_Sum_Temperature

call SUM_SCATTER(Node_Avg_Temperature, Temperature)

SUM_SCATTERis a global subroutine, so this fragment of code is global.

The distinction between local data and global data is frequently one of context. For instance, if we want to
scale cell centered temperature data by some constant, we might write:

real, dimension(ncells) :: Temperature

94 TRUCHAS Physics and Algorithms LA-UR-08-0819

Temperature = scale_factor * Temperature

In this case Temperature is local data, since we are operating on each processor’s portion of the mesh
independently.

8.3.2 Compute Locally

Once again, because our machine model assumes distributed memory, and because we do not assume any
native machine capability to access memory of other processors, all computation is local. That is, every
processor can only compute on data which it owns,i.e. local data. This means that most of the Truchas code
looks like single processor, serial code. The main distinction is that any operation which involves the whole
mesh must use special routines. Most of the physics algorithms are local, however.

8.3.3 Communication is Global

Any non-local algorithm requires communication between processors, and hence must use one the PGSLIBroutines.
Common global operations include gathering data from vertices to cell centers, scattering (with a combiner
such as addition) data from cell centers to vertices and computing the dot product of two vectors. Input and
output is also global.

8.3.4 Partitioning The Data

So far we have mentioned that operations on the whole mesh, such as computing the derivative of a field,
are global operations. (Derivatives require neighbor cell information, and hence are non-local.) However,
users supply Truchas with a single mesh, and so the question is how to transition from a single mesh to a
distributed, partitioned, mesh.

We divide the mesh among processors using a mesh partitioner. In the general case we use a program
called Chaco, from Sandia National Laboratory. That program looks at the mesh connectivity and returns
a permutation array which tells us how to reorder the mesh so that we can get the number of partitions
we want with as little communication between partitions as possible. It also tries to make the partitions
as evenly sized as possible so that all processors will have the same amount of work to do. (Obviously,
returning one partition containing the whole mesh and all other partitions containing no data at all would
minimize communication between partitions. That would not help us distribute the computation between
processors, though.)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 95

In same cases, rather than using Chaco we use a simple algorithm which divides the mesh into blocks. This
works well if the mesh is a rectilinear mesh that has been generated by Truchas’ internal mesh generator. It
does not work well for any other kind of mesh.

8.3.5 Common Pitfalls

The most common mistake that inhibits parallel operation is to treat a global operation as if it were local.
For instance:

real, dimension(ncells):: Temperature
real, dimension(nnodes):: Node_Sum_Temperature

if (MAXVAL(Temperature) <= Temp_Min) then
call SUM_SCATTER(Node_Sum_Temperature, Temperature)

end if

The error here is that each processor will have a different result forMAXVAL(Temperature) , so some
processors may enter the if clause and others will not. SinceSUM_SCATTERis a global operation, our
symantics require that all processors must execute it. If some do and some do not, then the operation will
not complete properly, and program will crash or hang, in the best case, or return incorrect results in the
worst case.

One thing that makes this such a nefarious bug is that it shows up only when some processors enter the if
clause and some do not. It is likely that for many data sets no processors or all processors will enter the if
clause, and hence the code will seem to be correct. In addition, for a given data set, the bug may show up
on some number of processors and not on other numbers of processors. (The bug will never show up on one
processor.)

One way to find this sort of bug is with a debugger such as Totalview. If the program is crashing or hanging,
you can examine it with Totalview and notice that some processors are executing one piece of code and
other subroutines are hung inside the if clause.

One correct way to code this example is:

real, dimension(ncells):: Temperature
real, dimension(nnodes):: Node_Avg_Temperature

if (PGSLib_Global_MAXVAL(Temperature) <= Temp_Min) then

96 TRUCHAS Physics and Algorithms LA-UR-08-0819

call SUM_SCATTER(Node_Avg_Temperature, Temperature)
end if

By making theMAXVALglobal the same value is returned to all processors. Assuming thatTemp_Min is
the same on all processors, then either all processors or no processor will enter the if clause.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 97

98 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix A

Discrete Operators

Discrete operators in TRUCHASare defined as those functions that discretely approximate continuous vector
calculus operators. The four operators currently approximated are the gradient (∇), curl (∇×), divergence
(∇ ·), and average (〈〉) operators. The operators act on either scalar (φ) or vector (v) input data and return
as output either scalar or vector data, as summarized in the table below.

Table A.1: TRUCHASdiscrete operators.

Operator Input Output Input Type Output Type

gradient φ ∇φ scalar vector
curl v ∇× v vector vector

divergence v ∇ · v vector scalar
average φ 〈φ〉 scalar scalar

A.1 Summary

The vector and scalar data input to the discrete operators itemized in TableA.1 can be located at either
cell centroids or cell nodes. Similarly, the scalar or vector discrete operator output can be located at cell
centroids, cell face centroids, or cell nodes, as summarized in TableA.2 below.

The location of data is indicated by the subscriptsc, f , andn, for cell centroid, face centroid, and cell node,
respectively.

Each discrete operator in TableA.2 above will be derived from an expanded data set if its location is on or

LA-UR-08-0819 TRUCHAS Physics and Algorithms 99

Table A.2: Discrete operator input/output data location.

Operator Input Output Input Type Output Type

face gradient φc ∇fφc scalar vector
cell gradient φc ∇cφc scalar vector

cell curl vc ∇c × vc vector vector
cell divergence vc ∇c · vc vector scalar
cell divergence vn ∇c · vn vector scalar
face average φc 〈φc〉f scalar scalar
node average φc 〈φc〉n scalar scalar

near a boundary. If the discrete operator location coincides exactly with a cell face centroid on a boundary,
then it ison a boundary. If the discrete operator location isnear a boundary, then then at least one of the
cells in the domain of dependence will have at least one face or node on a boundary. A cell in the domain of
dependence is an immediate neighbor whose data effects the value of the discrete operator. For these cases,
additional boundary condition (BC) data is used to determine the discrete operator, as itemized in the table
below.

Table A.3: Conditions for including additional BC data in determining discrete operators.

Additional BC Data Source of BC Data:
Operator is Included if. . . All boundary faces. . .

face gradient face owns≥ 1 boundary node sharing≥ 1 face node
cell gradient cell owns≥ 1 boundary node of cell and neighbors

cell curl cell owns≥ 1 boundary node of cell and neighbors
cell divergence cell owns≥ 1 boundary node of cell and neighbors
face average face owns≥ 1 boundary node sharing≥ 1 face node
node average node on a boundary sharing boundary node

As is evident in TableA.3 above, BC data is included in the computation of discrete operators if the cell
or face of concern is on or near a boundary. In this case, BC data comes from the boundary faces of the
reference cell (or face) as well as those boundary faces of immediate neighbor cells. As an example, the
influence of BC data on a cell and face gradient is depicted in the schematic below.

100 TRUCHAS Physics and Algorithms LA-UR-08-0819

A.1.1 Algorithm Overview

Given discrete scalar dataφ residing at cell centroids, approximations for first-order derivatives (e.g.,∇φ)
on 2-D and 3-D fully-unstructured meshes must be made. The method is based on the work of Barth [34],
who has devised innovative least squares algorithms for the linear and quadratic reconstruction of discrete
data on unstructured meshes. Second (and higher) order accuracy has been demonstrated on highly irregular
(e.g., random triangular) meshes. In this approach, Taylor series expansionsφTS

n are formed from each
reference celli at centroidxi to each immediate cell neighborn at centroidxn:

φTS
n (xi) = φi(xi) + (xn − xi) · ∇iφi(xi) + . . . (A.1)

whereimmediate neighborcells are defined to be those cells sharing at least one vertex with the reference
cell i. The Taylor-Series expansion ofφ in EquationA.1 above is termed alinear reconstructionif only
the first derivative (gradient) terms are retained in the expansion. This is the assumption currently made in
TRUCHAS. The sum(φTS

n − φi)2 over alln immediate neighbors is then minimized in the least squares (L2

norm) sense:

min
∑

n

(φTS
n − φi)2 =⇒

∑
n

(φTS
n − φi)

∂(φTS
n − φi)
∂∇iφi

= 0 (A.2)

The above minimization yieldsN = ndim ∗ nneighbors equations for the unknown components of∇iφi.
Here nneighbors is the total number of immediate neighbors, which includes the number of interior
(int neighbors) and boundary (bc neighbors) neighbors, andndim is the dimensionality of the
system, i.e., the number of unknowns for∇iφi. Each neighborn therefore yieldsndim separate, linearly-
independent equations for∇iφi. If N < ndim the system is undetermined, ifN = ndim, the system is
solvable, and ifN > ndim, the system is overdetermined. In general the system is overdetermined, hence a
minimizing solution must be sought according to EquationA.2 above.

One way in which least squares solutions to EquationA.2 can be found by solving a linear system known
as the normal equations []:(

ATWA
)
x = ATWb, (A.3)

whereA,

A =

 (xk − xi) (yk − yi) (zk − zi)
...

...
...

(xn − xi) (yn − yi) (zn − zi)

 , (A.4)

is a densendim×N matrix, andW ,

W =

 wk . . . 0
...

...
...

0 . . . wn

 , (A.5)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 101

is a diagonalN × N matrix. The diagonal entries inW are individual weightswk = wd
k ∗ wg

k, expressed
in general form as the product of a geometric weightwg

k and a data-dependent weightwd
k. The geometric

weightwg
k is1/|xk − xi|t (we taket = 2) and the data-dependent weightwd

k, unity by default, is the optional
Weight argument passed into all discrete operator procedures, hence its value is determined at execution
time. The vectorb (lengthN) is given by

b =

 φk − φi
...

φn − φi

 , (A.6)

and the solution vectorx (lengthndim) is

x =

 ∇xiφi

∇yiφi

∇ziφi

 . (A.7)

After carrying out the matrix-vector and matrix-matrix multiplications in EquationA.3, the linear system

A′x = b′, (A.8)

is obtained, whereA′ is andim× ndim matrix,

A′ =

 ∑
n wnδxniδxni

∑
n wnδyniδxni

∑
n wnδzniδxni∑

n wnδxniδyni
∑

n wnδyniδyni
∑

n wnδzniδyni∑
n wnδxniδzni

∑
n wnδyniδzni

∑
n wnδzniδzni

 , (A.9)

whereδxni = xn − xi, δyni = yn − yi, andδzni = zn − zi. The vectorb′ (lengthndim) is given by

b′ =

 ∑
n wnδxniδφni∑
n wnδyniδφni∑
n wnδzniδφni

 , (A.10)

whereδφni = φn−φi. Each component of theA′ andb′ is therefore derived by summing over all immediate
interior and boundary neighbors (nneighbors) of the reference celli. The resultingndim× ndim linear
system is easily solved with conventional direct methods such as LU decomposition.

If the reference value ofφ, e.g.,φi in EquationA.1, is not known, then EquationA.2 is derived by performing
partial derivatives with respect toφi in addition to the components of∇φ. This results inndim+1 unknowns,
henceφi will also be part of the solution. This is the case for face gradients, whereφi is φf , the unknown
value ofφ at facef . Face values ofφ are not known because discrete values ofφ reside only at cell centroids.

A′ =


∑

n wnδxniδxni
∑

n wnδyniδxni
∑

n wnδzniδxni
∑

n wnδxni∑
n wnδxniδyni

∑
n wnδyniδyni

∑
n wnδzniδyni

∑
n wnδyni∑

n wnδxniδzni
∑

n wnδyniδzni
∑

n wnδzniδzni
∑

n wnδzni∑
n wnδxni

∑
n wnδyni

∑
n wnδzni

∑
n wn

 , (A.11)

102 TRUCHAS Physics and Algorithms LA-UR-08-0819

b′ =


∑

n wnδxniφn∑
n wnδyniφn∑
n wnδzniφn∑

n wnφn

 , (A.12)

x =


∇xiφi

∇yiφi

∇ziφi

φi

 . (A.13)

Least squares reconstruction methods are quite powerful and attractive for a number of reasons. First, they
are not married to any particular mesh topology or dimensionality, hence are easily amenable to any unstruc-
tured mesh in one, two, or three dimensions. All that is required is a set of discrete data points described by
their data values and their physical location. Second, there are no constraints (other than conservation of the
mean, as described by Gooch [35]) on what has to be minimized or how that minimization is to be performed.
For example,L1 orL∞ norms might also be minimized rather than theL2 norm as above. Third, the discrete
data points can be arbitrarily weighted and/or constrained in the minimization process, which is apparent
in EquationA.3 via inclusion of the geometric weightswk. Data-dependent weights can also be included.
These might arise as a result of constraints such as monotonicity, validity, etc. With data-dependent weight,
however, the resulting overdetermined system of equations frequently has to be solved with a method other
than the normal equations. As a final note, the accuracy of this method is easily increased by including
additional terms in the Taylor series expansionφTS

i .

LA-UR-08-0819 TRUCHAS Physics and Algorithms 103

104 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix B

Support-Operators

The support-operators method [36,37] is a means of constructing discrete analogs of invariant differential
operators, like the divergence and the gradient. In TRUCHAS, a mixed hybrid formulation of the support-
operators method is used within the species diffusion component. It is also used as a discretization scheme
for the electromagnetics component (disguised as finite elements). The heat transfer component and the
projection step in the fluid flow component, uses the support-operators discretization of the AUGUSTUS

code package [38,39,37].

There are several formulations of the support-operators methodology, and the version used by the species
diffusion and electromagnetics component are different from the version used by the heat transfer and and
the fluid flow components. We include both formulations here for elucidation and comparison.

B.1 Species Diffusion Component Support-Operators Formulation

This formulation is used for the species diffusion component and its description was adapted from [40].

To provide an overview of support-operators, we consider the following standard diffusion equation given
by

−div (K gradT) = f ∀ (x, y, z) ∈ Ω ⊂ <3, (B.1)

whereT (x, y, z) represents concentration,K(x, y, z) is the conductivity, andf is a source term. In general,
K may be a symmetric positive-definite tensor that can vary discontinuously in space. The problem becomes
well-posed when we enforce boundary conditions. Here we only consider homogeneous Dirichlet boundary
conditions, i.e.,

T (x, y, z) = 0, ∀(x, y, z) ∈ Ω. (B.2)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 105

Next, we reduce the second-order operator given in (B.1) to a more natural set of first-order operators, given
by

div W = f, W = −K gradT, (B.3)

where the first equation is an expression of conservation and the second is an expression ofFourier’s Law.

In thefirst step of the support-operators discretization method, we specify discrete degrees of freedom for
the scalar and vector unknowns. With TRUCHAS in mind, we assume a mesh consisting of hexahedral
elements. LetΩh be such a mesh consisting of hexahedral elements{Hc}ncells

c=1 such that

Ω =
⋃

c=1,ncells

Hc.

We use the geometric cell- and face-centers to define the locations of the scalar and vector unknowns, re-
spectively. Specifically, the face-centered vector unknowns are represented only by their normal component
W · n.

In the second stepof the support operator discretization method, we equip the discrete spacesHC and
HF of scalar and vector unknowns, respectively, with scalar products. These scalar products are simple
extensions of their continuous analogues. We define the the inner product for discrete scalar functionsu and
v in HC as

[u, v]HC
def=

ncells∑
c=1

uc vc |Hc|, (B.4)

whereuc andvc are the cell-centered values, and|Hc| is the element volume. For the space of discrete
vector unknowns, the scalar product is not as straightforward and we provide only a brief description here.
See [36] for a more careful description of the vector unknown space scalar product. Nonetheless, we define
the inner product by

[A,B]HF
def=

∑
Hc∈Ωh

[A,B]HF ,Hc
(B.5)

with

[A,B]HF ,Hc

def=
8∑

n=1

(Kc
n)−1(Ac

n,Bc
n) V c

n . (B.6)

Here,n loops over all vertices of the hexahedronHc, andKc
n is the diffusion coefficient local toHc at its

vertexn. V c
n denotes a “nodal” volume, andAc

n andBc
n denote cartesian vectors located at vertexn of Hc.

These nodal vectors are constructed using face-centered vector unknowns from faces that are adjacent to the
node and belong toHc.

106 TRUCHAS Physics and Algorithms LA-UR-08-0819

Thethird step of the support operator discretization method is to define a discrete analogue of the divergence
operatorDIV : HF → HC. Based on Gauss’ divergence theorem, we have the coordinate invariant
definition ofdiv given by

div W = lim
V→0

1
V

∮
∂V

W · n dS. (B.7)

We use this expression to define a discrete divergence over a hexahedron inΩh. Denote byF a particular
face with areaAF . Then the discrete analogue of (B.7) on hexahedronHc is

(DIV W)Hc =
1
|Hc|

∑
F∈Hc

AF W · nF,c, (B.8)

wherenF,c is the outward normal to faceF of hexahedronHc.

Finally, in thefourth step of the support operator discretization method, we derive a discrete flux operator
G (as the discrete analogue of the operator−K∇) that is adjoint to the discrete divergence operatorDIV
with respect to the two scalar products (B.4) and (B.5), i.e.

[DIVW,u]HF = [W,Gu]HC , ∀W ∈ HF , ∀u ∈ HC. (B.9)

To derive an explicit formula forG, we consider an auxiliary scalar product< ·, · > and relate it to scalar
products (B.4) and (B.5). Denote by< ·, · > the standard vector dot product, then

[u, v]HC =< Du, v >, and [U,W]HF =<MU,W >,

whereD is a diagonal matrixD = diag{|H1|, |H2|, . . . , |Hncells|}, with the volumes of all hexahedrons on
the diagonal, andM is a sparse symmetric mass matrix. Combining these last two formulas, we get

[W,DIV?u]HF =< W,MDIV?u >= [DIVW,u]HC =< W,DIVTDu > .

for all W ∈ HF andu ∈ HC. Here,DIVT is the adjoint ofDIV with respect to the auxiliary scalar
product. Therefore,

MDIV? = DIVTD

which implies

G = DIV? =M−1DIVTD. (B.10)

The support operator discretization of the first order system (B.3) is now given by

DIVW = fh, andW = GT,

whereW ∈ HF , T ∈ HC, andfh is a vector of integral averages off , each component taken over one
hexahedron in the mesh.

Note thatDIVT u is defined on faces and represents the difference in concentration between two adjacent
cells. This operator forms the basis of the gradient in theORTHOalgorithm used in heat transfer calculations.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 107

B.1.1 Mixed Hybrid Formulation

In the mixed hybrid formulation, we localize the face centered vector unknowns from step two above to cells
by introducung two separate ones, one for each cell adjacent to a face. Continuity of the normal flux across a
face is enforced by introducing additional equality constraints: We require the face flux on a face belonging
to a cell to equal that of the equivalent face on its neighbor cell. These additional equality constraints are
introduced by means of Lagrange multipliers which results in additional scalar degrees of freedom, one for
each face. It turns out that these unknowns represent in fact the concentration on faces.

The algebraic equations that must be solved can be written as a3 × 3 block matrix, where the blocks
derive from dividing the unknowns into cell centered concentrations, face centered concentrations, and face
centered normal fluxes. The mixed hybrid linear system of equations arises when the face centered normal
flux variables are eliminated (via block elimination). We go one step further and then eliminate the face
centered concentration variables as well.

B.2 AUGUSTUS Support-Operators Formulation

This formulation is used for the heat transfer component and the fluid flow component of Truchas. The
following description was adapted from [38,39].

We start with the following diffusion equation

−div Dgradφ = S , (B.11)

which can be written

div
−→
F = S , (B.12)

−→
F = −Dgradφ , (B.13)

whereφ represents the temperature,D represents the thermal conductivity,
−→
F represents the heat flux and

S represents a heat source in the heat transfer solution. In the projection step of the fluid flow solution,φ

represents a change in the pressure,D represents the inverse of the density,
−→
F represents an “acceleration”

flux andS represents an “acceleration gradient” source.

To discretize this equation, we integrate over a cell (c), applying Gauss’s Theorem to change the volume

108 TRUCHAS Physics and Algorithms LA-UR-08-0819

integral into a surface integral over the faces (f):

∑
f

−→
Fc,f ·

−→
Ac,f = ScVc (B.14)

This is the basic form used by TRUCHAS. The gradient terms (
−→
Fc,f ·

−→
Ac,f) are calculated separately from

the solution of the conservation equation, so that a matrix-free solution procedure may be followed. This
matrix-free solution method requires that the gradient terms be calculated when given theφ-values of a trial
solution, so that is the form derived by the Support Operator Method.

Note that this discretization will be inherently conservative, and that no derivatives are taken across material
boundaries – a rigorous treatment. We locate unknowns forφ at the cell centers and the cell faces. The
−→
Fc,f ·

−→
Ac,f (gradient) terms, on each face of a cell, must be defined in terms of theφ’s within that cell.

In summary, the Support Operator Method represents the diffusion term (div Dgradφ) as the divergence
(div) of a gradient (grad), explicitly defines one of the operators (in this case, the divergence operator),
and then defines the remaining operator (in this case, the gradient operator) as the discrete adjoint of the first
operator. The last step is accomplished by discretizing a portion of a vector identity. In other words, the first
operator is set up explicitly, and the second operator is defined in terms of the first operator’s definition. The
rest of this section derives the Support Operator Method in more detail.

To derive the Support Operator Method used in AUGUSTUS, we start with this vector identity,

div
(

φ
−→
W

)
= φdiv

−→
W +

−→
W · gradφ , (B.15)

whereφ is the scalar variable to be diffused and
−→
W is an arbitrary vector, and integrate over a cell volume:∫

c
div

(
φ
−→
W

)
dV =

∫
c
φdiv

−→
W dV +

∫
c

−→
W · gradφ dV . (B.16)

Each term in the equation above will be treated separately.

The first term in EquationB.16can be transformed via Gauss’s Theorem into a surface integral,∫
c
div

(
φ
−→
W

)
dV =

∮
S

(
φ
−→
W

)
·
−→
dA . (B.17)

This is discretized into values defined on each face of the hexahedral cell,∮
S

(
φ
−→
W

)
·
−→
dA ≈

∑
f

φf

−→
Wf ·

−→
Af . (B.18)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 109

The second term in EquationB.16 is approximated by first assuming thatφ is constant over the cell (at the
center value), and then performing a discretization similar to the previous one for the first term:

∫
c
φdiv

−→
W dV ≈ φc

∫
c
div

−→
W dV , (B.19)

= φc

∮
S

−→
W ·

−→
dA , (B.20)

≈ φc

∑
f

−→
Wf ·

−→
Af . (B.21)

Turning to the final (third) term in EquationB.16, we insert the definition of the flux,

−→
F = −Dgradφ , (B.22)

to get ∫
c

−→
W · gradφdV = −

∫
c
D−1

−→
W ·

−→
F dV . (B.23)

Note that by defining the flux in terms of the remainder of the equation, the gradient is being defined in
terms of the divergence.

The third term is discretized by evaluating the integrand at each of the cell nodes (octants of the hexahedral
cells, represented byn) and summing:

−
∫

c
D−1

−→
W ·

−→
F dV ≈ −

∑
n

D−1
n

−→
Wn ·

−→
FnVn . (B.24)

Combining all of the discretized terms of EquationB.16 and changing to a linear algebra representation
gives ∑

f

φfWT
f Af = φc

∑
f

WT
f Af −

∑
n

D−1
n WT

nFnVn . (B.25)

Rearranging terms gives∑
n

D−1
n WT

nFnVn =
∑

f

(φc − φf)WT
f Af . (B.26)

110 TRUCHAS Physics and Algorithms LA-UR-08-0819

Note that the right hand side is a sum over the six faces, but the left hand side is a sum over the eight nodes.

In order to express the node-centered vectors,Wn andFn, in terms of their face-centered counterparts,
define

JT
nWn ≡


WT

f1Af1

WT
f2Af2

WT
f3Af3

 , (B.27)

wheref1, f2, andf3 are the faces adjacent to noden and the Jacobian matrix is the square matrix given by

Jn =
[

Af1 Af2 Af3

]
. (B.28)

Using this definition for the node-centered vectorsWn andFn and performing some algebraic manipula-
tions results in

∑
n

D−1
n Vn


WT

f1Af1

WT
f2Af2

WT
f3Af3


T

J−1
n J−T

n


FT

f1Af1

FT
f2Af2

FT
f3Af3

 = W̃TΦ̃ , (B.29)

where the sum over faces has been written as a dot product ofW̃ andΦ̃, which are defined by

W̃ =



WT
1 A1

WT
2 A2

WT
3 A3

WT
4 A4

WT
5 A5

WT
6 A6


, Φ̃ =



(φc − φ1)

(φc − φ2)

(φc − φ3)

(φc − φ4)

(φc − φ5)

(φc − φ6)


. (B.30)

To convert the short vectors involving the faces adjacent to a particular node into sparse long vectors involv-

LA-UR-08-0819 TRUCHAS Physics and Algorithms 111

ing all of the faces of the cell, define permutation matrices for each node,Pn, such that


WT

f1Af1

WT
f2Af2

WT
f3Af3

 = Pn



WT
1 A1

WT
2 A2

WT
3 A3

WT
4 A4

WT
5 A5

WT
6 A6


= PnW̃ , (B.31)

where, for example,

Pn =


0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0


if f1 (n) = 3,
f2 (n) = 5,
andf3 (n) = 2.

(B.32)

Note thatPn is rectangular, with a size ofNdimensions×Nlocal faces(3 × 6 for 3-D, 2 × 4 for 2-D, 1 × 2 for
1-D).

Using the permutation matrices, and definingF̃ in a fashion similar tõW (F̃ is a vector ofFT
f Af for each

cell face), gives∑
n

D−1
n VnW̃TPT

nJ−1
n J−T

n PnF̃ = W̃TΦ̃ , (B.33)

or

W̃T

[∑
n

D−1
n VnPT

nJ−1
n J−T

n Pn

]
F̃ = W̃TΦ̃ , (B.34)

or

W̃TSF̃ = W̃TΦ̃ , (B.35)

where

S =
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn . (B.36)

The original vector
−→
W (on whichWf andW̃ are based) was an arbitrary vector. It can now be eliminated

from the equation to give

SF̃ = Φ̃ . (B.37)

112 TRUCHAS Physics and Algorithms LA-UR-08-0819

This equation could be easily inverted (S is 6× 6 in 3-D), and the resultant relationships between
−→
Fc,f ·

−→
Ac,f

andφ for each cell combined using EquationB.14and flux equality at each face into a sparse matrix for the
entire problem, which could be solved once for the solution to the original EquationB.11. This is what is
done inside AUGUSTUS.

However, due to historical reasons, TRUCHAS takes a different approach. TRUCHAScombines all of the cell
equations like EquationB.37 into a single (block-diagonal) equation. When the outer nonlinear iteration

needs the gradients (
−→
Fc,f ·

−→
Ac,f), this block-diagonal matrix equation is solved. Note that no conservation

equation is solved when determining these gradients, and the fluxes on either side of a face are not set equal.
Also, instead of iteratively solving for the unknownΦ values on the faces, these are set to the cell-center
value across the face (i.e. the neighbor cell value) once at the beginning of the inner matrix solve for the
gradients. The TRUCHAS solution method will be changed in the future.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 113

114 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix C

Linear Solution Methods

An incompressible flow algorithm constructed with the fractional-step projection method discussed in Chap-
ter 3 requires solutions to linear systems of equations. A solution to a pressure projection equation, Equa-
tion 3.62 whereP is the pressure, are required. The equation is basically elliptic in nature, and can be
expressed in matrix notation as

Ax = b , (C.1)

whereA is a matrix resulting from the discretization,x is the solution vector, andb is a vector source
term. Since for our equations the matrixA arises from finite volume discretizations of the Laplacian, we
expectA to be sparse, positive definite (xTAx > 0), and in general symmetric, hence our solution methods
should take advantage of this structure. The total computational effort of our fractional-step scheme will
be dominated by the effort required to find solutions to EquationC.1, therefore designing an efficient and
scalable method for solving these systems of linear equations is of paramount importance.

Which method for the solution of EquationC.1 is recommended? There are several metrics one must take
into account when considering a solution method for linear systems of equations: robustness, or ability to
converge; efficiency, or convergence rate (if the method is iterative); scalability of the computational effort
(relative to the number of unknownsN) required to find a solution; and complexity of implementation.
Ideally, we desire a method thatalwaysconverges (provided our equations are well-posed), that exhibits
computational effort scaling linearly withN , and that requiresgrid-independent iterations to convergence.
This last requirement may be restated as requiring our method to converge to a solution for a given physical
domain in an iteration count that does not change with the number of grid points used to partition the domain.
Of the possible solution methods briefly mentioned here, including direct and stationary iterative methods,
Krylov subspace methods, multigrid methods, and hybrid methods, only the multigrid and hybrid methods
have shown promise in meeting all of our requirements.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 115

C.1 Direct and Stationary Iterative Methods

SinceA for our equations is not dense, but rather sparse and usually diagonally-dominant, direct solution
methods such as Gaussian elimination and Cholesky or LU factorization are not recommended. Because
of the non-constant coefficients of the operators, FFT or cyclic reduction methods are also not effective.
These methods require computational effort that scale likeN3, which can improve toN2 if the solution
method takes advantage of the sparsity ofA, but this scaling is not the linear scaling we desire. The
primary attractiveness of direct solvers is their robustness, or ability to find a solution for any nonsingular
A, e.g., especially whenA has a high condition number (ratio of maximum to minimum eigenvalues)
arising from small mesh spacings or high density ratio flows. Stationary iterative methods, such as Jacobi,
Gauss-Seidel, and symmetric successive over-relaxation (SSOR) [41], are attractive because of their ease
of implementation, but they exhibit poor scaling, requiring computational effort that scales likeN2, and
they can frequently exhibit a lack of robustness (inability or slowness to converge). While these stationary
iterative methods are not recommended for finding solutions to EquationC.1, they do remain quite useful as
preconditioners in Krylov subspace methods or as smoothers in the multigrid method. Further information
about direct and stationary iterative methods can be found in a host of classic textbooks. I have found
references [42,43,44] to be particularly useful.

C.2 Krylov Subspace Methods

Krylov subspace methods [44, 45] are iterative methods in which solutions to EquationC.1 are extracted
from a subspace by imposing constraints on the residual vectorb−Ax, typically that it be orthogonal tom
linearly independent vectors in the subspace. The most popular and widely used Krylov subspace methods
are the conjugate gradient (CG) algorithm if our positive definite matrixA is symmetric or generalized
minimal residual (GMRES) algorithm ifA is not symmetric. These methods are in general robust, with the
CG method theoretically guaranteed to converge inN iterations, and GMRES usually able to converge if
A does not have an excessive condition number and is diagonally-dominant. Krylov subspace methods are
also relatively easy to implement.

The problem, however, is that Krylov subspace methods can be slow to converge unless the linear system
given by EquationC.1 is first “preconditioned” with a preconditioning matrixM that either multiplies the
system from the left side (left preconditioning),

(M−1A)x = M−1b , (C.2)

or from the right side (right preconditioning),

(AM−1)y = b; y = Mx . (C.3)

The net effect of preconditioning is a linear operator (in parentheses above) that is closer to the identity
matrix, which accelerates the convergence of the Krylov subspace method. The new linear operator,AM−1

116 TRUCHAS Physics and Algorithms LA-UR-08-0819

or M−1A, will have a smaller condition number and eigenvalues that are more clustered than withA alone.
Choosing the preconditioning matrixM is often not easy, as it must be an approximation toA that is
easily inverted. Unfortunately, preconditioning the Krylov subspace method is almost always necessary,
as without it these methods converge too slowly. With preconditioning, one must also solve an additional
preconditioning equation, given byMz = r, wherez is a Krylov vector andr is a residual. Fortunately,
approximate solutions forz are usually good enough, hence using simple iterative methods like SSOR or
Jacobi to findz is often adequate.

If a good preconditioning matrixM can be chosen, preconditioned Krylov subspace methods can be quite
powerful and efficient linear solution methods. They have been perhaps the most popular choice for the past
two decades, primarily because of their robustness and ease of implementation. The problem, however, is
that preconditioned Krylov subspace methods do not exhibit the scaling we desire, requiring computational
work that scales likeN5/4 (at best) and iterations to convergence somewhere betweenN1/4 andN1/2. Can
this scaling problem of Krylov subspace methods be overcome? Perhaps, if one is willing to focus efforts
on the preconditioner, as discussed in SectionC.4below.

Additional information on Krylov space methods can be found in [46], where detailed algorithm templates
sufficient for implementation are provided. See also reference [47] for an insightful introductory overview
and [48,49] for performance comparisons on linear systems arising from the NS equations.

C.3 Multigrid Methods

As stated previously, we seek a linear solution algorithm that requires computational work scaling likeN ,
and we furthermore require that the method can find solutions in an iteration count that does not change
with N . These requirements are usually met for linear elliptic solutions with a multigrid (MG) method [50],
hence the scalability of the MG method is a powerful attraction. The basic premise of the MG method is the
identification and suppression of long wavelength (low frequency) error modes in the residual via solutions
of an equivalent linear system on a series of grids coarser than the base (finest) grid. This is in contrast to
traditional iterative (Jacobi, SSOR, Gauss-Seidel) and Krylov subspace methods, which quickly eliminate
only those high frequency error modes indicative of coupled nearest neighbor cells. Low frequency error
modes, however, tend to persist without elimination until enough iterations have taken place for the long
wavelength modes to be “seen”. MG methods, on the other hand, immediately “see” these long wavelength
modes on the coarser grids, which, once identified, can be suppressed after transfer back to the series of
finer grids.

On each grid in the MG method, iterative approximate solutions to the linear system are obtained; rigorous
solutions are not obtained on any one grid, but rather obtained on the base (finest) grid after many fine-
to-coarse-to-fine (V) cycles. Space does not permit a detailed discussion of this powerful technique, but
overviews can be found in the excellent monograph of Briggs [51] and the introductory textbook by Wes-
seling [52]. The reader is also encouraged to consult references [53, 18] for examples of the MG method

LA-UR-08-0819 TRUCHAS Physics and Algorithms 117

applied to linear systems of equations arising specifically from incompressible interfacial flows.

One of the most important and difficult tasks in formulating an MG algorithm is the approximation of the
intergrid transfer functions, namely the restriction (fine-to-coarse) and prolongation (coarse-to-fine) opera-
tors. Performance of the MG method, measured as scalability and convergence robustness, depends crucially
upon the choice of these operators. One approach is using the intergrid transfer functions to define varia-
tional or Galerkin coarse grid operators. This task can be complicated and expensive, however, especially
if the restriction and prolongation operators are anything but piecewise constant (e.g., stencil growth can
occur). This fact has motivated others [54,55] to adopt the simpler approaches like those suggested in [56].

Experience has shown that the MG method at times lacks robustness, having a propensity to fail and/or
exhibit slow convergence on the types of linear systems arising in incompressible interfacial flows. Here
“tough” systems are those resulting from flows possessing large, abrupt, and localized changes in density
and/or surface tension along an interface that is topologically complex. This lack of robustness can usually
be traced to restriction and prolongation operators that are misrepresenting important interfacial physics be-
cause of inaccurate or inappropriate interpolation and/or smoothing functions. Robustness and convergence
can be enhanced in many cases with more intelligent restriction and prolongation operators that do not in-
correctly smooth across interfaces. Formulation and implementation of such operators in the presence of
arbitrarily complex interface topologies, however, can be very expensive and cumbersome.

C.4 Hybrid Methods

Until the MG method can be made more robust and easily implemented, and Krylov subspace methods more
scalable, more and more researchers are devising unified,hybrid methods aimed at combining the strengths
of both methods while eliminating their weaknesses. Two basic types of hybrid methods have appeared
in the literature to date. In the first approach, MG is the principal solution method, but a Krylov subspace
method is used for solutions on one or more of the (coarser) grids rather than a simple iterative method. This
approach helps to alleviate the MG robustness problem by relying on a robust Krylov method. In the second
approach, a preconditioned Krylov subspace method is retained as the principal solution algorithm, but an
MG-like (multilevel) method is used to obtain solutions to the preconditioning equation. Both approaches
have merit and have exhibited improved performance, but it is not clear at this time which hybrid method
exhibits the desired scalable performance without loss of robustness. One issue has become clear, however:
scalable performance absolutely requires a multilevel algorithm, i.e., ideas inherent in the MG methodmust
pervade.

The idea of using a symmetric MG algorithm to precondition a standard Krylov subspace (CG) method
was first proposed and demonstrated by Kettler [57]. This idea, however, did not gain acceptance and
popularity until the recent work of Tatebe [58]. Its use has since exploded, having shown utility in modeling
incompressible flows [55,59], semiconductor performance [60], and groundwater flow [61]. It possesses the
robustness lacking in many MG algorithms, able to find solutions on the most challenging of interfacial flow

118 TRUCHAS Physics and Algorithms LA-UR-08-0819

problems. A hybrid “MGCG” method, while usually scaling like a MG algorithm, occasionally exhibits
CG-like scaling, hence additional research is needed to understand which aspects of the algorithm hinder
consistent MG-like scaling. For most of the flow problems tested, the hybrid MGCG method requires less
computational work than the MG method to seek a solution. This same basic approach was recently shown
to be effective for the parallel solution of linear systems of equations on 3-D unstructured meshes [62]. In
this case, a combined additive/multiplicative Schwarz [63,45] technique was ideal for providing a means by
which multilevel solutions to the preconditioning equation on parallel architectures could be obtained.

C.5 Approximating the Preconditioning Matrix

C.6 Inverting the Preconditioning Matrix

We develop a parallel, two-level, solver for 3 dimensional (3-D), unstructured grid, nonsymmetric, elliptic
problems. The solver is a preconditioned GMRES method with cell centered finite volume spatial discretiza-
tion. The preconditioner can be viewed as a two-level Schwarz method or a two-grid multigrid V-cycle with
aggressive coarsening. Our coarse grid correction employs simple summation and injection for inter-grid
transfer operators and a variational method to construct the coarse grid operator. These choices have resulted
in a minimum of software complexity.

C.6.1 Introduction

As the field of computational physics matures the algorithmic challenges grow more complex. Among
theses challenges are the need to solve large 3-D elliptic problems efficiently, the use of unstructured grids
for modeling complex geometries, and the ability to effectively utilize modern parallel computing platforms.
In this paper we detail an algorithm for the iterative solution of large 3-D elliptic problems, on unstructured
grids, and on modern parallel computing platforms. Our initial motivation for the development of this
algorithm has been simulation of casting processes using 3-D unstructured finite volume methods and the
development of the TRUCHASsimulation code [64,65]. However, the method is quite general and should find
use in a variety of applications such as ground water flow. Also, while we apply this method to stationary
unstructured finite volume grids, it could be applied to simulation problems using adaptive mesh refinement.

Our model equations of interest are,

∂φ

∂t
+∇ · (−D(r)∇φ) = s1(r), (C.4)

and

∇ · (D(r)∇φ) = s2(r). (C.5)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 119

In the simulation of casting the first equation arises from heat conduction with phase change and the second
equation is a pressure Poisson equation for variable density incompressible flow. The two modern iterative
approaches to the solution of linear systems arising from the discretization of these equations are precon-
ditioned Krylov methods [45] and multigrid methods [52]. Paramount to the development of an efficient
elliptic solver is the notion of algorithmic scalability. An optimal algorithm is one who’s required itera-
tion count is not a function of the grid refinement, and multigrid methods are the most widely understood
methods which posses this character. Developing parallel multigrid methods for unstructured grids is more
challenging than developing a serial multigrid method for structured grids. Especially if one is required to
use a sophiticated diffusion operater on the unstructured grid [66]. A notable success has been the work of
Mavriplis [67]. Developing a parallel preconditioned Krylov solver for unstructured grids is rather straight
forward. The path of least resistance appears to be using a domain-based preconditioner [68], the simplest
being block Jacobi (one-level additive Schwarz). This approach can provide one with good parallel effi-
ciency but it does not possess the property of algorithmic scalability. That is, as the grid is refined, and the
number of blocks (or processors) is increased, the number of required Krylov iterations will increase. The
two approaches for overcoming this scaling, as put forth in [68], are the addition of a coarse grid correction
scheme and overlap between the blocks. In order to minimize the lack of algorithmic scalability we add
a simple coarse grid correction scheme to a straight forward block Jacobi preconditioner. In constructing
our solver we have attempted to strike a balance between: 1) code complexity and development time, 2)
algorithmic scalability, and 3) parallel efficiency.

By “simple coarse grid correction” we mean 3 specific things. The coarsening is predefined by the parallel
decomposition of our 3-D grid. This is another way of saying that every processor represents a coarse grid
finite volume. Our inter-grid transfer operators are low-complexity, piece-wise constant interpolation. Our
coarse grid linear operator is formed in an algebraic manner from our fine grid matrix and our inter-grid
transfer operators, i.e. a variational method. As a result of these choices no physics operator is discretized
on a coarse grid, and in fact no coarse grid is actually formed.

An additional simplification for unstructured grid problems, afforded us through the use of an outer Krylov
iteration, is the fact that we never form the matrix resulting from our true discrete operator. The effect of the
true discrete operator is only realized in the matrix-vector multiply of the Krylov method. The only matrix
which is formed (for preconditioning purposes) is one which results from a lower-order, more approximate,
discrete operator. The true discrete operator is a least squares based method [35,69] which can in general
produce a nonsymmetric matrix. We use the General Minimal Residual (GMRES) algorithm [70] for our
Krylov method.

We clearly acknowledge that our method could be described as either a two-grid multigrid V-cycle precon-
ditioner with block Jacobi as the fine grid smoother and a variational coarse space, or as a two-level Schwarz
preconditioner which is additive on the fine level, multiplicative between levels and has minimal overlap.
This dual distinction has also been acknowledged in [68]. We are less concerned with the exactness of our
chosen vernacular and more concerned with the clear presentation of the algorithm and its performance. The
number of possible algorithms in the numerical analysis literature which may be viewed as closely related
to ours are to numerous to mention. In point of fact, the main algorithmic character of our preconditioner

120 TRUCHAS Physics and Algorithms LA-UR-08-0819

can be traced back to the early work of Poussin [71], Settari and Aziz [72], and Nicolaides [73].

Finally, we wish to emphasize that this two-level preconditioner can be viewed as a means through which
to parallelize one’s favorite non-parallel iterative preconditioner such as SSOR, ILU, or algebraic multigrid.
In Section 2 we describe our fine grid solver, and Section 3 discusses the coarse grid correction in the
preconditioner. Algorithmic performance is given in Section 4, and conclusion is Section 5.

C.6.2 Fine Grid Solver

In this section we outline the details of the fine grid solver which is a preconditioned Krylov method. The
preconditioning matrix is constructed using a simplified, approximate, spatial discrete operator. A block
Jacobi method is used to iteratively invert this fine grid preconditioner. We use left preconditioning with in
the Krylov software package JTpack90 [74] and and utilize the parallel communication library PGSLib [75].

C.6.2.1 Preconditioned Krylov Methods

Probably the best known Krylov method is the conjugate gradient (CG) method made popular in the compu-
tational physics community by Kershaw [76]. CG is applicable only to symmetric matrices. Let us compare
CG to GMRES [70], which can be applied to nonsymmetric matrices. CG enjoys a short vector recurrence
relationship which allows one to construct an orthogonal set of search directions without storing all of the
search directions. Thus in CG, work scales linearly, and required storage is constant, as the number of iter-
ations increases. In GMRES, work scales quadratically, and required storage scales linearly, as a function
of iteration count. This is because GMRES must store all of the search directions in order to maintain an
orthogonal set. An often employed “fix” is to store only k Krylov vectors, GMRES(k). If linear conver-
gence is not achieved after k iterations a new, temporary, linear solution is constructed from the existing k
vectors and GMRES is restarted, with this temporary solution as the initial guess. Restarting can signif-
icantly effect the convergence rate of GMRES. As a result, when using GMRES as we are here, there is
great motivation to keep the required number of GMRES iterations low. We feel this translates into a clear
need for effective multilevel preconditioning. We also acknowledge that Krylov methods exist which can be
applied to nonsymmetric systems, and which possess storage requirements which are independent of Krylov
iteration [77,78].

It will be our convention to use lower case bold faced letters to represent vectors and upper case bold faced
letters to represent matrices. The general linear system arising from the discretization of our model equations
is Aφ = s. The left preconditioned form of is,

P−1Aφ = P−1s, (C.6)

whereP represents symbolically the preconditioning matrix andP−1 represents its inverse. In practice, this
inverse is only approximately realized through some standard iterative process, and the symbolP̃−1 may be

LA-UR-08-0819 TRUCHAS Physics and Algorithms 121

more appropriate. Each GMRES iteration requires a preconditioned matrix-vector multiply,

y = (P̃−1A)v, (C.7)

wherev is the known,nth, search direction andw represents the first step in forming then + 1st search
direction. The multiply requires two steps.
Step 1, matrix vector multiply:

w = Av, (C.8)

Step 2, Preconditioning (parallel bottle neck):

y = P̃−1w, (C.9)

(i.e iteratively solvePy = w).

There are two important questions to ask at this point. What approximation ofA to use to formP, and
what iterative method to use to approximateP−1. As stated previously our spatial operator on the 3-D
unstructured grid is based on a least-squares method [35,69]. To evaluatew = Av with out evaluatingA
is straight forward, but to actually form the elements ofA is more complicated. We chose to formP from
a simple 7-point method for the∇ · (−D(r)∇) operator which assumes a locally orthogonal grid. This not
only reduces complexity but also insures a preconditioning matrix which is diagonally dominant. Next we
define our approach for approximatingP−1.

C.6.2.2 Block Jacobi: Basic Domain Decomposition

The goal of domain-based preconditioners is to decompose the global inversion into a sum of local inversions
which can be done on processor, in parallel [68]. The local, on processor, “subdomain” inversions(Psub

i)−1

can be direct solves, ILU, SSOR, multigrid or something else. For a 4 subdomain (4 processor) problem we
have;

P = Psub
1 + Psub

2 + Psub
3 + Psub

4 . (C.10)

Block Jacobi (single pass) assumes;

P−1 ≈ (Psub
1)−1 + (Psub

2)−1 + (Psub
3)−1 + (Psub

4)−1. (C.11)

In [68] This would be referred to as an additive Schwarz method. This approximation degrades with the
number of subdomains (i.e processors) and thus the effectiveness of the preconditioner degrades.

122 TRUCHAS Physics and Algorithms LA-UR-08-0819

(1) (2)

(3) (4)
fine grid,h

� -H

Figure C.1: 4 subdomain example

For further insight consider block Jacobi with 4 subdomains in fig. (C.1). Here the fine grid spatial scale is
defined ash, and the subdomain spatial scale is defined asH, with H � h.

In our parallel implementation the global matrixP is not stored. The unknowns in each subdomain problem
have a unique ordering within that subdomain. This is equivalent to thinking of a global systemPy = w,
reordered within subdomains, to look like:


D11 U12 U13 U14

L21 D22 U23 U24

L31 L32 D33 U34

L41 L42 L43 D44




y1

y2

y3

y4

 =


w1

w2

w3

w4

 .

This is a domain-based reordering and results from blocking our physical geometry (finite volumes) into
subdomains. Here the block matrixU12 represents the coupling of subdomain 1 to subdomain 2, the block
matrix U13 represents the coupling of subdomain 1 to subdomain 3, and so on. Thenth block Jacobi
iteration, assuming a direct solve on the subdomains, can then be represented by;

LA-UR-08-0819 TRUCHAS Physics and Algorithms 123

yn
1 = D−1

11 [w1 −U12yn−1
2 −U13yn−1

3 −U14yn−1
4]

yn
2 = D−1

22 [w2 − L21yn−1
1 −U23yn−1

3 −U24yn−1
4]

yn
3 = D−1

33 [w3 − L31yn−1
1 − L32yn−1

2 −U34yn−1
4]

yn
4 = D−1

44 [w4 − L41yn−1
1 − L42yn−1

2 − L43yn−1
3] (C.12)

As can be seen this is highly parallel. Fory0 = 0, and one pass, this is equivalent to ”block” diagonal
scaling, and theU’s andL’s need not be formed. Again, an approximate inverse may be more practical on
the subdomains (i.e. replacingD−1

11 with D̃−1
11) andD̃−1

11 can be ILU, SSOR, multigrid, or something else.

Since it is our intention to use this block Jacobi method as a fine grid smoothery0 will not always be zero,
and we need to form theU’s andL’s. In our structured grid, 4 subdomain, example forming theU’s and
L’s can be thought of as using a 1 cell(finite volume) overlap to form Dirichlet boundary conditions. In
our parallel implementation,D11,U12,U13,U14 andyn

1 reside on processor 1. Copies of the elements of
yn−1

2 ,yn−1
3 ,yn−1

4 which are required to formyn
1 are also stored on processor 1. This forces some level

of inter-processor communication for multiple passes of block Jacobi. Algorithm performance penalties
for removing levels of communication will be considered in the future. In the terminology of Schwarz
methods [68] this is the extent of our overlap. While it is known that increased overlap improves algorithmic
scalability, increased overlap is a challenge for unstructured grids. Thus our fine grid solver is a GMRES
method with a block Jacobi preconditioner. The blocks are defined by the part of our geometry which resides
on a processor. The local ”on processor” solves within the block Jacobi can be direct solves, ILU, SOR, or
multigrid. Next we describe our coarse grid correction which is added to the block Jacobi preconditioner.

C.6.3 Coarse Grid Correction Scheme

As stated, our block Jacobi preconditioner, will become less effective with increasing numbers of subdo-
mains / processors, resulting in an undesirable increase in the number of GMRES iterations. Since it is
our goal to run onO(103) processors we must add something to our algorithm to remedy this scaling. It
is well understood that our preconditioner lacks a multilevel component which would enhance global com-
munication. In order to correct this we have opted for a single coarse grid correction scheme where each
subdomain represents a “coarse grid finite volume” and thus our coarsening is predefined by our domain
decomposition. It will be demonstrated that this simple addition positively impacts the performance of our
solver by improving algorithmic scaling without significantly degrading parallel performance.

Consider the following two-level preconditioner which could be referred to as an additive Schwarz method,
multiplicative between levels , or as a two-grid V-cycle with a block Jacobi smoother. We desire the iterative
solution toPy = w with f ≡ fine, andc ≡ coarse. The act of restriction transfers fine grid data to the
coarse grid and the act of prolongation transfers coarse grid data to the fine grid.

1. Relaxy0
f to y1

f by approximately solving(Pf)−1(w −Pfy0
f)

124 TRUCHAS Physics and Algorithms LA-UR-08-0819

(Additive Schwarz / block Jacobi is the smoother)

2. Evaluate linear residualresf = w −Pfy1
f , and restrict to coarse grid,

resc = R ∗ resf

3. Solve coarse grid problem,Pcδyc = resc, for coarse grid correction
δyc.

4. Prolongate coarse grid correction and update fine grid solution vector,
y2

f = y1
f + P ∗ δyc

5. Relaxy2
f to y3

f by approximately solving(Pf)−1(w −Pfy2
f)

(Additive Schwarz / block Jacobi is the smoother)

First let us highlight the required inter-processor communication in this preconditioner assuming one pass
of block Jacobi at steps 1 and 5. Step 2 requires communication since in terms of our 4 subdomain example
resf,1 is a function ofy1

f,2 , y1
f,3, andy1

f,4. Step 3 requires communication in order to assimilate or coarse
grid operator onto 1 processor where it is solved. Step 4 requires communication to distribute the coarse
grid correction to all processors. Step 5 requires communication since our block Jacobi has a nonzero
initial guess,y2

f . This complete level of communication should provide increased robustness and improve
algorithmic scaling. Removing levels of communication, and evaluating performance gains or losses, is part
of our future plans.

Next we define the inter-grid transfer operators, Restriction and Prolongation (R andP) and the coarse
grid operatorPc. The unstructured grid has motivated the simplest choices forR andP, summation forR
and injection forP (piece-wise constant). Fori ≡ grid cell index, andI ≡ sub-domain index we have,

resc = R ∗ resf ⇒ resI,c =
∑
i∈I

resi,f

and

y2
f = y1

f + P ∗ δyc ⇒ i ∈ I, y2
f,i = y1

f,i + δyc,I

Forming the coarse grid operator by re-discetizing the problem on a coarse grid can be challenging with an
unstructured grid. It may also involving bringing ”physics” down to coarse grid which we view as undesir-

LA-UR-08-0819 TRUCHAS Physics and Algorithms 125

able. We form our coarse grid operator in ”Black Box” fashion [79] using our restriction and prolongation
operators,

Pc = R ∗Pf ∗ P. (C.13)

The coarse grid operator is constructed algebraically from fine grid operator and we will provide a simple
algorithm for this below. This is often referred to as a variational approach and our differs from that of [79]
due to the simplicity of our inter-grid transfer operators.

A few comments are in order regarding the simplicity of our inter-grid transfer operators. It is known,
within the multigrid community, that to develop an optimal method for a second order PDE either restriction
or prolongation must be linear interpolation [52]. We do not satisfy this. However, recent results with
multigrid as a preconditioner indicate that the penalty to be paid for this simplicity may not be as significant
as when multigrid is a stand alone solver [80,81]. It should also be noted that if our fine grid operator comes
from a conservative finite volume discretization, and we use our simple inter-grid transfer operators to form
a coarse grid operator, then our coarse space problem will also be a conservative balance of face fluxes and
volume sources. This is known to be a useful property from black box multigrid [79,82].

As “experimental evidence” that this simple coarse grid correction should produce a positive effect we cite
the recent work of Jenssen and Weinerfelt [83] applied to the fully coupled Navier-Stokes equations. Their
two-level method is used without a Krylov accelerator, using direct solves on the subdomains, and no post
smoothing after the coarse grid correction. They employ summation and injection with finite volumes (
identical inter-grid transfer operators to ours), and generate their coarse grid operator with the variational
approach.

Finally, we describe the algorithm for constructing the coarse grid operator. We define the total number of
finite volumes asNfv and the total number of subdomains asNsd. Pf is anNfv × Nfv matrix andPc is
anNsd × Nsd matrix. P is anNfv × Nsd matrix andR is anNsd × Nfv matrix. Due to the simplicity of
P andR they are not formed. We define an element ofPf asPf (i, j) and an element ofPc asPc(I, J).
Given these definitions, and Eq. (C.13), each element of the coarse grid matrix is constructed as

Pc(I, J) =
∑
i∈I

∑
j∈J

(Pf (i, j)). (C.14)

Each row ofPc can be constructed on it’s own processor from the part ofPf which lives on that processor.
For a clarity, we return to the 4 subdomain example. In this examplePc(1, 1) is the sum of all elements in
D1,1, Pc(1, 2) is the sum of all elements inU1,2, Pc(1, 3) is the sum of all elements inU1,3, andPc(1, 4) is
the sum of all elements inU1,4. We are not required to have an equal number of finite volumes within each
subdomain.

126 TRUCHAS Physics and Algorithms LA-UR-08-0819

C.6.4 Future Work

• Multiple coarse grid volumes per subdomain

• damped block Jacobi smoother

• reduced and/or altered communication in V-cycle

• more processors

LA-UR-08-0819 TRUCHAS Physics and Algorithms 127

128 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix D

Nonlinear Solution Methods

A continually recurring problem in TRUCHAS is the need to find an approximate solution to

F (u) = 0, (D.1)

whereF : Ω ⊂ Rm → Rm is a nonlinear mapping andm is order of the mesh size. Methods of solving
(D.1) whenF is smooth1 are typically some variant of Newton’s method: ifuk is the current approximate
solution, the next approximate solution isuk+1 := uk+δuk+1, whereδuk+1 is the solution of thecorrection
equation

Jkδuk+1 = −F (uk) (D.2)

with JacobianJk := F ′(uk). Unfortunately, it may be very expensive, or even practically impossible, to
compute the Jacobian and/or solve the correction equation exactly, especially for larger systems. In such
situations, one can instead seek an approximate solution to (D.2), possibly using an approximation forJk,
which gives rise to aninexact Newton method. TRUCHAS provides two such methods: the Jacobian-free
Newton-Krylov method and an accelerated inexact Newton method.

D.1 Jacobian-Free Newton-Krylov Method

The Generalized Minimal RESidual (GMRES) algorithm [45] is used to solve EquationD.2. GMRES (or
any other Krylov method such as conjugate gradients) defines an initial linear residual,r0 given an initial

1Strictly speaking, the nonlinear systems encountered in TRUCHAS may not be smooth everywhere owing, for example, to
nonsmoothness in phase diagrams or the solid mechanics contact model. Nevertheless it is useful in in practice to ignore this fact,
recognizing that the nonlinear solver convergence behavior will be adversely effected in a neighborhood of the nonsmoothness.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 129

guess,δu0,

r0 = −F(u)− Jδu0. (D.3)

Note that the nonlinear iteration index,k, has been dropped.

The lth GMRES iteration minimizes‖ Jδul + F(u) ‖2 with a least squares approach.δul is constructed
from a linear combination of the Krylov vectors{r0,Jr0, (J)2r0, ..., (J)l−1r0}, which were constructed
during the previousl − 1 GMRES iterations. This linear combination of Krylov vectors can be written as,

δul = δu0 +
l−1∑
j=0

αj(J)jr0, (D.4)

where evaluating the scalarsαj is part of the GMRES iteration. Upon examining EquationD.4 we see
that GMRES requires the action of the Jacobian only in the form of matrix-vector products, which can be
approximated by [84]

Jv ≈ [F(u + εv)− F(u)] / ε, (D.5)

wherev is a Krylov vector (i.e. one of{r0,Jr0, (J)2r0, ..., (J)l−1r0}), andε is a small perturbation.

EquationD.5 is a first order Taylor series expansion approximation to the Jacobian,J, times a vector,v. For
illustration consider the two coupled nonlinear equationsF1(u1, u2) = 0, F2(u1, u2) = 0. The Jacobian
for this problem is;

J =


∂F1

∂u1

∂F1

∂u2

∂F2

∂u1

∂F2

∂u2

 .

Working backwards from EquationD.5, we have;

F(u + εv)− F(u)
ε

=


1
ε

[
F1(u1 + εv1, u2 + εv2)− F1(u1, u2)

]
1
ε

[
F2(u1 + εv1, u2 + εv2)− F2(u1, u2)

]
 .

ApproximatingF(u + εv) with a first order Taylor series expansion aboutu, we have;

130 TRUCHAS Physics and Algorithms LA-UR-08-0819

F(u + εv)− F(u)
ε

≈


1
ε

[
F1(u1, u2) + εv1

∂F1

∂u1
+ εv2

∂F1

∂u2
− F1(u1, u2)

]
1
ε

[
F2(u1, u2) + εv1

∂F2

∂u1
+ εv2

∂F2

∂u2
− F2(u1, u2)

]
 .

This expression can be simplified to;

 v1
∂F1

∂u1
+ v2

∂F1

∂u2

v1
∂F2

∂u1
+ v2

∂F2

∂u2

 = Jv

This matrix-free approach, besides its obvious memory advantage, has many unique capabilities. Namely,
Newton-like nonlinear convergence withoutformingor invertingthe true Jacobian.

To complete the description of this technique we provide a prescription for evaluating the scalar perturbation.
In this studyε is given by,

ε =
1

N ||v||2

N∑
m=1

b|um|, (D.6)

whereN is the linear system dimension andb is a constant whose magnitude is approximately the square
root of machine roundoff (b = 10−5 for most of this study).

We employ right preconditioning and thus we are solving,

(JP−1)(Pδu) = −F(u). (D.7)

P symbolically represents the preconditioning matrix andP−1 the inverse of preconditioning matrix. In
practice, this inverse is only approximately realized through some standard iterative method, and thus we
may think of it more as̃P−1.

The right preconditioned matrix-free algorithm is:

JP̃−1v ≈ [F(u + εP̃−1v)− F(u)] / ε, (D.8)

This is done is actually done in two steps;

LA-UR-08-0819 TRUCHAS Physics and Algorithms 131

1. Solve (iteratively, and not to convergence)Py = v for y

2. PerformJy ≈ [F(u + εy)− F(u)] / ε,

Thus only the matrixP is formed and only the matrixP is iteratively inverted.

There are two choices to be made;

1. What linearization should be used to formP ?

2. What linear iterative method should be used to solvePy = v ?

D.2 An Accelerated Inexact Newton Method

In this section we consider a nonlinear Krylov acceleration procedure for inexact Newton’s method that was
introduced in [85] (see also [86]). This method falls into a broad class of accelerated inexact Newton (AIN)
schemes discussed in [87], though it differs from the specific methods described there.

In the inexact Newton method the correction equation (D.2) is solved only approximately, and often with an
approximationMk for the JacobianJk as well. Formally we may express this inexact correctionvk+1 as

vk+1 := −P (uk)−1F (uk), (D.9)

whereP (uk)−1 is the preconditionerfor the nonlinear system. CommonlyP−1 is only realized as an
iterative procedure applied to the systemMkv = −F (uk); neitherP nor P−1 need ever be explicitly
formed. The ideal preconditioner would be the exact inversion ofJk, yielding Newton’s method.

Defining G(u) = −P (u)−1F (u), we recognize that this inexact Newton iteration is simply the standard
fixed point iterationuk+1 := uk+G(uk), which converges ifG′ is sufficiently close to−I in a neighborhood
of the root. Indeed, ifP (u) = F ′(u) thenG′ = −I at the root.

With this fixed point iteration view of inexact Newton as a reference, the accelerated method proceeds
with successive approximationsuk+1 = uk + vk+1, k = 0, 1, . . . At iteration k we have accumulated
from previous iterations the correction spaceVk = span{v1, . . . , vk} and correspondingG-difference space
Wk = span{w1, . . . , wk}, wherewn = G(un)−G(un−1). The fixed point iteration choosesvk+1 = G(uk)
as the next correction. The ideal correction would solveG(uk + vk+1) = 0, which isn’t feasible, but
linearizing one could choosevk+1 such that

0 = G(uk) + G′(uk)vk+1. (D.10)

132 TRUCHAS Physics and Algorithms LA-UR-08-0819

The fixed point iteration, not knowing anything aboutG′, invokes the assumption thatG′ ≈ −I and so
substitutes−I for G′. However, ifG′ is nearly constant in a neighborhood of the root then

wn ≈ G′vn (D.11)

so that one does (approximately) knowG′ on the spaceVk. Hence we split the correction in (D.10) into two
pieces:vk+1 = p + q with p ∈ Vk, for which we know the action ofG′ by (D.11), and leftover pieceq,
for which we do not and so will replaceG′ by −I as in the fixed point iteration. Introducing the matrices
Vk = [v1 . . . vk] andWk = [w1 . . . wk], this split correction is

p = Vky, 0 = G(uk) + Wky − q, (D.12)

wherey ∈ Rk is chosen so thatWky is the bestl2 fit to −G(uk). The accelerated correction is thus

vk+1 := G(uk)− (Vk + Wk)(W T
k Wk)−1W T

k G(uk). (D.13)

For the first iteration (k = 0) the spacesV0 andW0 are empty, and the correctionv1 is identical to the fixed
point iteration correctionG(u0).

Notice that there is nothing that requires one to useall the previous correctionsv1, . . . , vk (and their corre-
spondingG-differences) when computing the accelerated correction (D.13). In fact, sinceG is nonlinear,
we might expect only the most recent corrections to yield decently accurate information aboutG′. Also
there is nothing to guarantee that thewn vectors are linearly independent. The accelerated method, there-
fore, assembles the pair of acceleration spaces(Vk,Wk) by taking the vectors in reverse order, starting with
(vk, wk), and dropping any pair(vn, wn) wheneverwn is nearly in the span of the precedingw-vectors.
Moreover, the number of vectors used is limited to a maximum number, which is typically very small so
that the cost, in time and memory, to compute the accelerated correction is quite modest.

D.3 Preconditioning

LA-UR-08-0819 TRUCHAS Physics and Algorithms 133

134 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix E

Sensitivity Analysis

Sensitivity analysis plays a vital role in trade-off, reliability, inverse/identification, and optimization studies.
For example, in a trade-off study one can view the temperature sensitivity field to determine where the
most drastic temperature changes will occur if one alters the value of a prescribed Neumann temperature
boundary condition.

By definition, the sensitivities are the derivatives of the system response with respect to the model param-
eters. To compute the sensitivities in TRUCHASthe direct differentiation and semi-analytical methods are
combined resulting in efficient and accurate computations that require minimal code modifications.

To explain this sensitivity analysis, consider an analysis which is descretized into a series of cell equations
and then assembled into a residual vector (cf. equationD.1) F(u) whereu is the discretized state vector.
The nonlinear equationF(u) = 0 is then solved foru in theprimal analysis by using the nonlinear solver
discussed in AppendixD. Of course, if we change a model parameters, then the residual and hence the
state change. To reflect this dependency, the residual equation is expressed as

F(u(s), s) = 0 (E.1)

where it is understood that the parameters is a known input. To determine the sensitivity of the state with
respect to a parameters, one could perturb the parameter by the amountδ, i.e. sets −→ s + δ, solve the
residual equation

F(u(s + δ), s + δ) = 0 (E.2)

and compute the derivative from the approximation

u′(s) ≈ 1
δ

[u(s + δ)− u(s)] (E.3)

This finite difference sensitivity analysis is simple to implement as the analysis is merely repeated with the
perturbed parameter. However, it is computationally unattractive since it requires an additional nonlinear

LA-UR-08-0819 TRUCHAS Physics and Algorithms 135

analysis for each parameters, for which the sensitivities are desired. Moreover, it is susceptible to truncation
errors ifδ is too large and round-off errors ifδ is too small. Of course the truncation error could be reduced
by using a second-order accurate approximation, i.e.

u′(s) ≈ 1
2 δ

[u(s + δ)− u(s− δ)] (E.4)

however, this would require another nonlinear analysis to evaluate the perturbed stateu(s− δ).

Two methods, theadjoint anddirect differentiation, have been used to efficiently and accurately evaluate
sensitivities for a wide variety of systems. The direct approach has been adopted in TRUCHASto avoid the
cumbersome backward time mappings that are required by the adjoint method [88]. Due to the transient
nature of the system it is necessary to rewrite the residual equation as

F(un(s),un−1(s), s) = 0 (E.5)

In the above equation, the stateun(s) evaluated at timet = tn is determined in the primal analysis given
the known inputs: the stateun−1(s) at time previous time stept = tn−1 and the parameters. Of course,
un−1(s) is known as it is evaluated during the primal analysis at the previous time step and for the initial
time, i.e.t = t0, u0(s) is the known initial condition. And, of courseun−1(s) is a function ofs as it changes
if s changes.

Differentiating EquationE.5with respect tos and rearranging gives thepseudo problem

Ju′n = −
{

∂F
∂un−1

u′n−1 +
∂F
∂s

}
(E.6)

whereJ is the Jacobian of EquationD.2. Thepseudo load, i.e. the right-had side of EquationE.6 is known
since we know the dependency of the residual onun−1 ands and since the sensitivityu′n−1(s) is evaluated
during the pseudo analysis at the previous time step and since for the initial timeu′0(s) is the known initial
condition sensitivity.

Note that the pseudo problem is linear in the sensitivityu′n(s) so the computation of the sensitivityu′n(s)
requires a linear solve even though the computation of the stateun(s) requires a nonlinear solve. In total,
one linear pseudo problem is solved for each parameters for which the sensitivity is desired.

Also note that the linear solve uses the same coefficient matrix that appears in EquationD.2. Thus, the
same solver that is used to resolve EquationD.2 can be used to resolve EquationE.6. In the best case
scenario, the JacobianJ is assembled and factored so that the solution of the each pseudo problem (one
pseudo problem is solved for each design parameter) only requires a back solve. However, this is seldom
the case. So in an effort to hasten the pseudo analyses, one may wish to invest extra effort to develop an
effective preconditioner forJ during the primal analysis so it can also be utilized for the subsequent pseudo
analyses.

The challenge of the sensitivity analysis is the ability to evaluate the pseudo load, i.e. the right-hand side
of EquationE.6. The derivatives can be computed analytically or by symbolic differentiation software.

136 TRUCHAS Physics and Algorithms LA-UR-08-0819

However, in TRUCHASthe semi-analytical method is used whereby the pseudo load is approximated from
the second-order accurate finite difference approximation

{
∂F

∂un−1
u′n−1 +

∂F
∂s

}∣∣∣∣
(un,un−1,s)=(un(s),un−1(s),s)

(E.7)

≈ 1
2 δ

{[
F(un(s),un−1(s) + δ u′n−1(s), s) + F(un(s),un−1(s), s + δ)

]
−[

F(un(s),un−1(s)− δ u′n−1(s), s) + F(un(s),un−1(s), s− δ)
]}

Combining EquationE.6and EquationE.7gives the pseudo problem

Ju′n =
1
2 δ

{[
F(un(s),un−1(s) + δ u′n−1(s), s) + F(un(s),un−1(s), s + δ)

]
−[

F(un(s),un−1(s)− δ u′n−1(s), s) + F(un(s),un−1(s), s− δ)
]}

(E.8)

Several variables must be carefully selected to accurately and efficiently compute the sensitivities. As previ-
ously mentioned, improper choices ofδ can lead to round-off or truncation errors so theSens Variable--
Sens Variable Pert variable must be carefully prescribed. To reduce computation for the pseudo load
evaluation a forward difference approximation can be used in place of the default central difference approx-
imation via the
NUMERICS--Energy Sensitivity Pseudo Load variable. Naturally the forward difference ap-
proximation will also result in decreased accuracy. Because the sensitivity analysis assumes thatF(un(s),un−1(s), s) =
0, cf. EquationE.5, the convergence criterion for the nonlinear solver, i.e. theNONLINEARSOLVER--
Convergence Criterion (of theNUMERICS-- Energy Nonlinear Solution namelist), vari-
able, must also be carefully prescribed (of course, this is good practice to ensure accurate computation of the
stateu). Finally, the ability to accurately and efficiently solve the linear pseudo problem of EquationE.8re-
quires careful consideration of theLINEAR SOLVER-- Convergence Criterion, Maximum Iterations,
Preconditioning Method, Preconditioning Preconditioner,
Preconditioning Scope, Preconditioning Steps,
Relaxation Parameter, and Stopping Criterion
(of theNUMERICS-- Energy Sensitivity Solution namelist) variables.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 137

138 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix F

Tensor Product Mesh Generation

A tensor productmesh is characterized by cells that are orthogonal quadrilaterals (rectangles) in 2-D or
orthogonal hexahedra (bricks) in 3-D. In addition, the edges of each (hex or quad) cell in a tensor product
mesh possess lengths that are in general different. Auniform tensor product mesh is one in which all cell
edge lengths are identical. While a uniform mesh is attractive from a numerical discretization point of view
(e.g., it is easier to quantify discretization errors), it is frequently more computationally efficient to use a
nonuniform mesh so that cells are concentrated in a particular region interest, such as in an area where solu-
tion gradients are steeper. Although there are several methods for generating a nonuniform mesh, described
herein is a method which is preferred in the TELLURIDEproject – and implemented in the TRUCHAScode –
namely a mesh in which the ratios of widths or any pairs of adjacent cells is a constant [89]. This type of
mesh, described below, is term a “ratio-zoned” mesh.

F.1 Description of a 1-D Ratio-Zoned Mesh

Assume an interval of widthw must be descretized,

X0 ≤ X ≤ X0 + w , (F.1)

with a “stretched” grid ofN cells having the property

Xi+1 −Xi

Xi −Xi−1
= β , (F.2)

for 1 < i < N . The above equation can be written in continuous form as

dX

di
= a βi , 0 ≤ i ≤ N , (F.3)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 139

wherea is a constant. Integrating EquationF.3:∫ X

X0

dX =
∫ i

0
aβi di , (F.4)

gives

Xi −X0 =
a

lnβ

(
βi − 1

)
. (F.5)

To simplify the discussion, assumeX0 = 0 and divide EquationF.5by w to give

xi =
a

lnβ

(
βi − 1

)
, (F.6)

wherex = X/w anda is now a dimensionless constant. The location of the mesh intervals,xi, is given in
EquationF.6 as a function of three variables:a, β, andi. Two auxiliary equations are further required to
solve EquationF.6. Given the problem definition, we have the first:

x(a, β, i = N) = 1 ; (F.7)

and, with loss of generality, the width of the first cell (∆) is assumed to be known, giving the second:

x(a, β, i = 1) = ∆ . (F.8)

EquationF.6, subject to the requirement of EquationF.8, can be solved fora:

a =
∆ lnβ

β − 1
; (F.9)

which allows EquationF.6to be written as

xi =
∆

β − 1
(
βi − 1

)
, 0 ≤ i ≤ N . (F.10)

EquationF.10, which is the formula for the sum of the firsti terms of a geometric series, may be written as

f =
∆

β − 1
(
βN − 1

)
− 1 = 0 . (F.11)

using the requirement of EquationF.7. The method used to solve EquationF.11depends upon whetherβ or
N is known. Each case is considered in the following.

F.1.1 Case 1:N is Given; Find β

Becausef(β) is a monotonic function (forβ ≥ 0, N > 0), EquationF.11may be readily solved forβ using
a Newton-Raphson (NR) method:

βk+1 = βk −
fk

f ′k
, (F.12)

140 TRUCHAS Physics and Algorithms LA-UR-08-0819

where

f ′ =
∂f

∂β
=

∆
β − 1

[
NβN−1 − βN − 1

β − 1

]
(F.13)

andk is the iteration count.

F.1.2 Case 2:β is Given; Find N

If β is known, EquationF.11may be solved directly forN :

N∗ =
ln
(
1 + β−1

∆

)
lnβ

. (F.14)

The value ofN∗ given by EquationF.14is in general not an integer, soN is found by roundingN∗ up to
the next whole number:

N = int (N∗ + 1) . (F.15)

F.1.3 Bounds forβ

Althoughf(β) is a monotonic function, the magnitude off and its derivatives can be large in the neighbor-
hood of the root if the solution to EquationF.11is close to unity. This can cause difficulties for the iteration
algorithm (EquationF.12) unless a suitable initial guess,β0, is given.

If β < 1, then the size of the last cell will be smaller than the average cell size:

∆βN−1 < 1/N , or β <

(
1

∆N

)1/N−1

. (F.16)

A lower bound forβ (whenβ < 1) can be found by allowingN to become unbounded in EquationF.11:

lim
N→∞

∆
βmin − 1

[
βN

min − 1
]
− 1 , or βmin = 1−∆ . (F.17)

ThusN may be computed from EquationsF.14andF.15providedβ > βmin.

If β > 1, the size of the last cell will be larger than the average cell size:

∆βN−1 > 1/N , or β >

(
1

∆N

)1/N−1

. (F.18)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 141

An upper bound for theβ > 1 case follows by observing that the sum of the widths of the firstN − 1 cells
is larger thanN − 1 times the smallest cell size:

1−∆βN−1 > (N − 1)∆ , or β <

(
1− (N − 1)∆

∆

)1/N−1

. (F.19)

Bounds forβ, given in EquationsF.16throughF.19, may be summarized as

1−∆ < β <

[
1
∆

]1/N−1

for β < 1 , (F.20)

and [
1

∆N

]1/N−1

< β <

[
1− (N − 1)∆

∆

]1/N−1

for β > 1 . (F.21)

F.2 Parameterizing the 1-D Ratio-Zoned Mesh

Six parameters characterize the 1-D ratio-zoned tensor product mesh in the previous section:

• β - the ratio of widths of any pair of adjacent cells;

• ∆L - the first cell width in the mesh interval;

• ∆R - the last cell width in the mesh interval;

• N - the number of cells in the mesh interval;

• w - the total width of the mesh interval; and

• a - the mesh constant given by EquationF.9.

A simple program can be written to compute three out of the six parameters above, with the other three
having been specified. Six combinations of of user-specified (known) input and computed (unknown) output
are possible:

1. Given∆L, N , andw; compute∆R, a, andβ.

2. Given∆R, N , andw; compute∆L, a, andβ.

3. Given∆L, β, andw; compute∆R, a, andN .

142 TRUCHAS Physics and Algorithms LA-UR-08-0819

4. Given∆R, β, andw; compute∆L, a, andN .

5. Given∆L, β, andN ; compute∆R, a, andw.

6. Given∆R, β, andN ; compute∆L, a, andw.

To insure that the iteration procedure in EquationF.12converges,β0 is chosen to be the upper bound from
EquationF.20or EquationF.21. When solving forN∗ in EquationF.14, the program usesβ = 1.01βmin if
the input value ofβ is less thanβmin.

F.3 Summary

An interval of widthw is meshed withN cells using an exponential function:

Xi =
∆L(βi − 1)

β − 1
or Xi = w − ∆R(αN−i − 1)

α− 1
(F.22)

where0 ≤ i ≤ N , 0 ≤ X ≤ w, and

Xi = coordinate of grid pointi ,

w = width of the mesh interval,

N = number of cells in the mesh interval,

β = ratio = (Xi+1 −Xi)/(Xi −Xi−1) ,

α = 1/β,

∆L = width of left (first) cell= X1 −X0 ,

∆R = width of right (last) cell= XN −XN−1 . (F.23)

Settingi = N andi = 0 in EquationF.22gives

XN = w =
∆L(βN − 1)

β − 1
=

∆R(αN − 1)
α− 1

. (F.24)

Settingi = N − 1 in EquationF.22gives

XN−1 =
∆L(βN−1 − 1)

β − 1
, (F.25)

which, when subtracted from EquationF.24, gives

∆R = ∆LβN−1 . (F.26)

When any three variables of the set(β, N,∆R,∆L, w) are known, EquationsF.24andF.26may be used to
find the unknown variables.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 143

F.4 Specifying a Tensor Product Mesh for TRUCHAS

In TRUCHAS, the current set of allowed input parameters areβ, N , andw, which gives simple algebraic
expressions for∆L and∆R, namely:

∆L = w
β − 1

βN − 1
and ∆R = ∆LβN−1 = w(β − 1) . (F.27)

144 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix G

Volume Fraction Generation

LA-UR-08-0819 TRUCHAS Physics and Algorithms 145

146 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix H

Plane Truncation of Hexahedral Volumes

LA-UR-08-0819 TRUCHAS Physics and Algorithms 147

148 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix I

Grid Mapping

The following chapter presents the TRUCHAS capability for mapping cell quantities between meshes.

I.1 Introduction

When performing a computational physics simulation in a given physical domain, it may be that two inde-
pendent unstructured grids are defined on this domain and it may be necessary to map quantities between
these meshes.

One situation occurs when “multi-physics” is present. That is, if there are multiple meshes in use for
simulation of different kinds of physical processes occuring at the same time, it may be necessary to map
quantities between the various meshes. This case is encountered in the Truchas casting simulation, where
a simplicial (i.e., tetrahedral) mesh is required to simulate electromagnetism with the resulting computed
inductive heating quantities (defined on the simplicial mesh) having to be mapped in a conservative fashion
onto an unstructured hexahedral mesh that is used for computation of heat-transfer, phase change, and
thermomechanical effects.

Another situation occurs during “restarts”. If a physics simulation is run over a time interval (say[T1, T2]),
it may have to be restarted on a different mesh in order to simulate the next time interval of interest (i.e.,
[T2, T3]). It may be that the mesh was deformed over the first time interval and was no longer usable, or
that the physical phenomena occuring in the two time intervals are different enough in character that a new
mesh is called for. This again happens in the Truchas code where a temperature field is passed between
subsequent stages of simulation which describe different stages of the casting process.

Previous research has involved mappings between a 3-D unstructured mesh and a 3-D Cartesian mesh [90]

LA-UR-08-0819 TRUCHAS Physics and Algorithms 149

which is from an algorithmic perspective a much simpler task than the task of mapping between two fully 3-
D unstructured meshes. In [91], techniques are given for mapping quantities between a pair of unstructured
2-D surface meshes. An excellent discussion is given in that reference of the quandary that arises when
mesh geometries do not match exactly and it is impossible to both preserve constant fields and be exactly
conservative in the mapping process.

In this chapter, we present an algorithm for rapidly and accurately mapping cell-based quantities from a
source mesh potentially consisting of hexahedra (“hexes”), prisms, pyramids, or tetrahedra (“tets”) to a
destination mesh occupying the same domain, which also consists of hexes, prisms, pyramids, or tets.

I.2 Theory

Our task is to map a cell-based function defined on unstructured elements of ‘MeshA’ to a cell-based
function defined on unstructured ‘MeshB’ quickly and in a conservative or near-conservative fashion. We
assume the elements of both meshes come from the usual ‘zoo’ of 3-D elements: hexahedra, prisms, pyra-
mids, and tetrahedra. LetfB(x) be the function defined by thenB cell values for theB mesh andfA(x)
be our function defined by thenA cell values for theA mesh. Herex ∈ ΩB =

⋃nB
i=1 Bi, the computational

domain defined by the elements of the meshB. This domain is assumed to be face-connected. I.e., we
assume that between any two elements in meshB, sayBαandBβ, there is a path

Bα = Bi1 , Bi2 , Bi3 , . . . , Bim = Bβ

such thatBik andBik+1
share a (triangular or quadrilateral) face for all1 ≤ k ≤ m − 1. Similarly, we

assume the functionfA(x) is defined on a domainΩA =
⋃nA

j=1 Aj which is the union of face-connected
elements that comprise meshA. For purposes of our mapping algorithm, we assumeΩA ⊆ ΩB. This
condition will be slightly relaxed later.

Let fB
i be the cell values offB on the meshB, andfA

j be the cell values offA on the meshA. Let χ
Bi

be

the characteristic function for elementBi which is defined by

χ
Bi

(x) =
{

1, x ∈ Bi

0, x /∈ Bi
.

Similarly, letχ
Aj

be the characteristic function for elementAj . In this notation,fB(x) =
∑

i f
B
i χ

Bi
(x)

andfA(x) =
∑

j fA
j χ

Aj
(x). (This conveniently definesfB(x) ≡ 0, x /∈ ΩB andfA(x) ≡ 0, x /∈ ΩA.)

For our map to be exactly conservative,∫
ΩB

fB(x) dV =
∫

ΩA

fA(x) dV. (I.1)

Obviously if fB(x) = fA(x) ∀x, this would be satisfied. Of course, this is not possible in general, but
since we havenB undetermined cell valuesfB

i to work with, we can forcefB = fA in the “weak sense”

150 TRUCHAS Physics and Algorithms LA-UR-08-0819

by requiring∫
ΩB

fBχ
Bi

dV =
∫

ΩA

fAχ
Bi

dV, 1 ≤ i ≤ nB. (I.2)

ThesenB equations will fix thenB unknown coefficientsfB
i . Indeed from(I.2) we have∫

ΩB

∑
k

fB
k χ

Bk
χ

Bi
dV =

∫
ΩA

∑
j

fA
j χ

Aj
χ

Bi
dV.

So

|Bi|fB
i =

∑
j

|Bi ∩Aj |fA
j ,

where|Bi| denotes the volume ofBi and|Bi ∩ Aj | denotes the volume of the intersection of elementBi

with elementAj . This implies that we should set

fB
i =

1
|Bi|

∑
j

|Bi ∩Aj |fA
j . (I.3)

Thus, with this choice forfB
i , we have (I.2) obeyed∀Bi, and summing over1 ≤ i ≤ nB, we obtain the

desired conservation condition (I.1).

Notice now that ifΩA = ΩB, then
∑

j |Bi ∩ Aj | = |Bi|, so that (I.3) definesfB
i as avolume-weighted

average of thefA
j . This weighted average has two desirable properties: (i) it islocal, so that thefB

i do not
unphysically depend onfA

j values that are not in the neighborhood ofBi. (ii) it is an average with non-
negative weights, so that no new unphysical maxima and minima are created in any neighborhood. That is,

min
Aj∩Bi 6=∅

fA
j ≤ fB

i ≤
max

Aj∩Bi 6=∅
fA

j , 1 ≤ i ≤ nB. (I.4)

In practice, our algorithm often only computes approximate values for the intersection

Vij ≈ |Bi ∩Aj |. (I.5)

We have three choices then. First, we could use (I.3) and perform the replacement (I.5) to obtain

fB
i =

1
|Bi|

∑
j

Vijf
A
j . (I.6)

This produces a cell field{fB
i } that is neither conservatively mapped (I.1) or a weighted average, but is what

we call a “raw” mapping. A second choice is to enforce conservation by multiplying theVij by a suitable

factor. In fact, if we replaceVij by Vij
|Aj |P
m Vmj

in (I.6), to obtain

fB
i =

1
|Bi|

∑
j

Vij
|Aj |∑
m Vmj

fA
j , (I.7)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 151

then we have that conservation has been restored:

∫
ΩB

fB dV =
∑

i

|Bi|fB
i

=
∑

i

|Bi|

 1
|Bi|

∑
j

Vij
|Aj |∑
m Vmj

fA
j


=

∑
j

|Aj |
∑

i Vij∑
m Vmj

fA
j

=
∫

ΩA

fA dV.

The third option is to keep our mapping’s “weighted average” property that preserves maxima and minima.
Thus we replace (I.6) by

fB
i =

1∑
k Vik

∑
j

Vijf
A
j . (I.8)

With this choice, assuming that our approximateVij are all non-negative and are only positive for those
j where the correspondingAj intersectBi, we have preserved the desirable local minima / local maxima
preserving property (I.4).

Our algorithm allows the user to specify all three choices (raw, conservative, and weighted average) and in
practice we have found weighted average is the most-used choice.

Our strategy is to compute the valuesVij exactly when bothAj andBi are convex planar polyhedra using
the robust algorithm described in SectionI.3.4. If howeverAj or Bi have some nonplanar faces (the chief
case being when the faces are bilinear as part of a trilinear hexahedral element), the computation of the exact
volume would be prohibitively expensive. Instead we ‘planarize’ any nonplanar faces (i.e., approximate the
nonplanar facets with planar ones) and then compute the exact intersection volumesVij ≡ |B′

i ∩A′
j |, where

B′
i andA′

j are the ‘planarized’ versions ofBi andAj .

I.3 Algorithms

An efficient algorithm to map cell-based functions between unstructured meshes requires efficient evaluation
of the approximate volumes in (I.5). This task is naturally broken up into two parts:

152 TRUCHAS Physics and Algorithms LA-UR-08-0819

Find intersections: Find out for whichi, j we haveVij 6= 0. (Here we assume the approximationsVij will
only be nonzero if the exact volumes|Bi ∩ Aj | are nonzero.)Vij is a sparse matrix: it has far fewer
thannB · nA nonzero entries. Looping over allnB · nA entries would be fatally inefficient and is
unnecessary. Our approach has complexityO(N log N) whereN is the number of nonzeroVij .

Compute Intersections: For nonzeroṼij , compute the intersection volumes exactly if the elements are
planar and approximately if they are nonplanar.

I.3.1 Finding Intersections

The idea of our algorithm is to use the assumption of face-connectedness of both unstructured meshes. This
allows us to traverse theA andB meshes simultaneously, finding the nonzeroVij values along the way. We
first start by puttingA1 (i.e. element number one from meshA) onto a stack. Now we proceed by popping
off the stack the element on top of the stack (call itAj) and we say that we have “visited” this element; we
then place back on the stack all unvisited face-neighbors ofAj . We deal withAj by finding all Bi such
thatBi ∩Aj 6= ∅ and computing the corresponding approximate intersection volumesVij . Initially, for A1,
we start withB1 and walk along theB mesh using theB mesh connectivity until we find aBi such that
A1 ∩ Bi 6= ∅. Then we do some more walking in theB mesh in the neighborhood ofBi until we have
discovered all theBi such thatA1 ∩Bi 6= ∅. We continue by popping another elementAj off the stack. We
then walk towards this new element on theB mesh starting not fromB1 but from the last elementBi that
had a nonzero intersection with the previously considered element from theA mesh.

We thus are effectively performing a coordinated walk on theA andB meshes, and this should have a
complexityO(N), whereN is the number of nonzeroVij . After all the elements of meshA have been
visited, we reorder the volume contributionsVij so that they can be put in row-packed sparse matrix form.
This reordering process employs a heapsort [92] and takesO(N log N) operations.

Algorithm 1 gives the ‘outer’ algorithm where a ‘walk’ is performed on the face-connectedA mesh.

The subroutinewalk mesh pt (Algorithm 2) accomplishes the task of “walking” from a starting element
B along a path of face-connected elements and ending at a new elementB that contains the pointx.

The idea of this algorithm is that given a current elementB, the point is tested against all the faces ofB.
(Note: in the case of nonplanar bilinear faces, we actually testx against the plane that passes through the
midpoints of the 4 linear edges bounding the face. It is easily shown that the 4 midpoints are coplanar.)
If x is on the wrong side of facek, thenB doesn’t containx and we must move to a new element which
becomes the “new”B. We usually move towardsx by choosing the neighboring element across facek. Since
nonconvex domains may necessitate somewhat circuitous walking paths, we prove the following lemma.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 153

Algorithm 1: Compute IntVols

Compute IntVols(Mesh A,Mesh B,IntVols)
[OutputIntVols is a sparse matrix representation of the
approximate overlap volumesVij ≈ volume(Bi ∩Aj) for elements
Bi in Mesh B andAj in Mesh A]

vol list ← ∅
[vol list will be a list of 3-tuples(i, j, Vij)
which will grow as intersection volumes are computed]
OnStackA (Aj)←.false. for all elementsAj in Mesh A
StackSA ← ∅
SeedEltB ← B1 [first element ofMesh B]
Put ElementA1 [first element ofMesh A] on stackSA

OnStackA(A1)← .true.
Do while stackSA nonempty

Pop ElementAj off stackSA

Loop over the facesk of ElementAj

If there is an elementEopp sharing facek with Aj then
If (.not.OnStackA(Eopp)) then

PutEopp on stackSA

OnStackA (Eopp)← .true.
xA ← centroid of vertices of ElementAj

Call walk mesh pt (SeedEltB, Mesh B,xA)
[Walk onMesh B, updatingSeedEltB , until xA ∈ SeedEltB]
Call get vols around elt (Aj , SeedEltB, Mesh B, vol list)
[Append tovol list 3-tuples(i, j, Vij) whereVij ≈ volume(Bi ∩Aj) for
Bi =SeedEltB and otherBi in the neighborhood ofSeedEltB that intersectAj]

Sortvol list into sparse row-packed matrixIntVols
[Use heapsort to sort(i, j, Vij) so thati’s are in increasing order (and
if equali, thenj’s are in increasing order).]
Return

154 TRUCHAS Physics and Algorithms LA-UR-08-0819

Algorithm 2: Walk meshpt [Walking on Mesh to point x]

Walk mesh pt (E,Mesh,x)

Initially placeE on stackS
Do whileS nonempty

PopE off stackS
viable← .true.
Etop ← 0
Loop over the facesk of ElementE

If (viable) then
If there is an elementEopp sharing facek with E then

If x on “wrong” side of facek (so thatx /∈ E) then
viable← .false.
If Eopp was never put on stackS then

Etop ← Eopp [Etop will be neighbor ofE put on
S lastso it will be thenextelement considered]

Else
If Eopp was never put onS then

PutEopp onS
Else

If x on wrong side of facei then
viable← .false

Else
If there is an elementEopp sharing facek with E then

If Eopp was never put onS then
PutEopp onS

If viable then
Return [success:x ∈ E]

Else
If Etop 6= 0 then

PutEtop onS
E ← 0 [failure]
Return

LA-UR-08-0819 TRUCHAS Physics and Algorithms 155

Algorithm 3: Get vols around elt [Walking on Mesh B to find
intersection volumes with elementAj from Mesh A]

Get vols around elt (Aj ,SeedEltB ,Mesh B,vol list)

P ← planarization(Aj)
[Replace curved faces ofAj with interpolating planes]
Initially placeSeedEltB on stackSB

Do while stackSB nonempty
Pop elementBi off stackSB

Loop overnfac facesk of Bi

Approximate facek with planePk

[Now Bi ≈
⋂nfac

k Dk whereDk is the halfspace bounded byPk]
PlaneCuts (k)←.false. , 1 ≤ k ≤ nfac
emptyintersection← .false.
Pint ← P
Do k = 1, nfac

If Dk ∩Aj = Aj then
cycle [immediately start next iteration of ‘do loop’]

Else ifDk ∩Aj = ∅ then
emptyintersection← .true.
exit [exit ‘do loop’]

Else
PlaneCuts (k)←.true.
Call Plane Poly Int3D (Pk,Pint,Ptmp)
[Computes intersection polyhedronPtmp = Pint ∩Dk]
Pint ← Ptmp

If Pint = ∅ then
emptyintersection← .true.
exit [exit ‘do loop’]

If emptyintersection = .false. then
NewVol← Volm Poly3D(Pint) [Volume ofPint]
Append 3-tuple(i, j, NewVol) to Vol list
Do k = 1, nfac

If (PlaneCuts(k)) then
If there is an element sharing facek with Bi then

Eopp ← element opposite from facek of Bi

If Eopp never before placed on stackSB then
PlaceEopp on stackSB

Return

156 TRUCHAS Physics and Algorithms LA-UR-08-0819

Algorithm 4: Map cell field [Map field fA to field fB]

Map cell field (fA, fB, IntVols, exactly conservative, preserve constants)

[The sparse matrixIntVols is assumed stored as follows:
There are 3 arrays:rowoff, col, andvol .
Intersection volumes pertaining toBi (row i) are in
array subsetvol(rowoff(i):rowoff(i+1)-1)
Fork’th element ofvol , we have thatcol(k) gives the
column numberj = col(k), pertaining toAj , so that
vol(k) = Vij ≈ volume(Bi ∩Aj).]

[We assume the following quantities are available:
|Aj | = volume(Aj) 1 ≤ j ≤ nA

|Bi| = volume(Bi) 1 ≤ i ≤ nB

RowSum(i) =
∑nA

j=1 Vij 1 ≤ i ≤ nB

ColSum(j) =
∑nB

i=1 Vij 1 ≤ j ≤ nA]

[We assumeexactly conservative andpreserve constants are not both.true.]

Do i = 1, nB

fB
i ← 0

Do k = rowoff(i), rowoff(i + 1)− 1
j ← col(k)
If (exactly conservative) then

fB
i ← fB

i + vol(k)× |Aj |
ColSum(j) × fA

j

Else
fB

i ← fB
i + vol(k)× fA

j

If (preserve constants) then
fB

i ← fB
i /RowSum(i)

Else
fB

i ← fB
i /|Bi|

Return

LA-UR-08-0819 TRUCHAS Physics and Algorithms 157

Lemma 1. In Algorithm 2, if x is in some element, we are given a valid starting element, and there is an
element containingx, Algorithm 2 will successfully find the element containingx.
Proof: Since we assume the mesh is face-connected, there is a face-connected path

E = E0, E1, E2, . . . , En 3 x (I.9)

from the starting elementE to En which should be the newE returned by the algorithm. Algorithm
2 uses a stackS and initially E0 is placed on the stack. Every time an elementE is popped off the
stack, it is checked for the propertyx ∈ E, and if true, we are done. Otherwise, all the neighbors of
E that have never been on the stack before are put on the stack. Since an element can only be placed
at most once on the stack, the only way the algorithm can fail is that eventually the stack is empty
andEn has not been found. In this case, there is a finite set of elements that were visited before the
algorithm failed. This set is

Evisited = {E | E was popped offS}.

Let Ei be the element in the sequence in (I.9) that belongs toEvisited and has maximal index in the
sequence in (I.9). WhenEi was popped off the stack,Ei+1 was either placed on the stack becauseEi

andEi+1 are face-neighbors or it wasn’t because it had previously been placed on the stack. Either
way, this contradicts the assumption thatEi ∈ Evisited has maximal index. Q.E.D.

It is similarly proven that in Algorithm 1, the traversal ofΩA using the stackSA successfully visits all
elements in meshA once and terminates.

We call Algorithm 3 withSeedEltB equal to the elementBi that was found to contain elementAj by
Algorithm 2. For the case thatAj and allBi are planar and convex, we prove the following lemma and defer
discussion of the nonplanar case to sectionI.3.3.

Lemma 2. In Algorithm 3, for the case thatAj and allBi are planar, convex polyhedra, and assuming that
Aj ∩ SeedEltB 6= ∅, we have that all intersections ofAj with MeshB will be found and deposited
into vol list .
Proof: Since we assumeAj is planar and convex, theplanarization operation does nothing,
so thatP = Aj . SeedEltB is initially placed on stackSB. The algorithm works by popping an
elementBi from MeshB off the stack, computing the intersection volumeVij = |Bi ∩ Aj | and
then placing this(i, j, Vij) information intoVol list if Vij > 0. The elementBi is stored as
the intersection ofnfac half-spaces. That is,Bi = ∩nfack=1 Dk, whereDk is the half-space bounded
by Pk which is the plane containing thek’th boundary face. The intersection is performed using
routinePlane Poly Int3D which intersects a half-space with a planar convex polyhedron.Bi is
assigned toPint, the “intersection polyhedron”, and this polyhedron is then intersected in order with
D1, D2, . . . , Dnfac, each intersection resulting in a potentially smallerPint. At the end of this process,
if Pint 6= ∅, routineVolm Poly3D computes the volume ofPint = Bi ∩ Aj by decomposition into
tetrahedra. IfVij > 0, then for each facek of Bi, we place the adjacent elementEopp on SB if and

158 TRUCHAS Physics and Algorithms LA-UR-08-0819

only if (i) the elementEopp actually exists and has never been placed on the stack before, and (ii)
the planePk containing the common boundary facetk betweenBi andEopp nontrivially dividesAj .
(Condition (ii) is checked by seeing if all the nodes ofAj lie on either side ofPk.) Clearly, ifPk does
not intersectAj , then it is impossible for bothBi ∩ Aj 6= ∅ andEopp ∩ Aj 6= ∅. SinceBi ∩ Aj 6= ∅,
we have thatEopp ∩ Aj = ∅, and we are justified in not puttingEopp onto the stack. Proceeding in
this fashion, it is clear that this algorithm will find all intersectionsVij = |Bi ∩Aj | if the set

BAj = {Bi | |Bi ∩Aj | > 0}

is face-connected. Now ifBi1 andBi2 are inBAj , letx1 ∈ interior(Bi1∩Aj) andx2 ∈ interior(Bi2∩
Aj). Then sinceAj is connected, we can connectx1 to x2 by a curveΓ lying entirely within
interior(Aj). SinceAj ⊆ ∪nB

i=1Bi, Γ traces a path fromx1 to x2 entirely within MeshB as well. If
necessary, we can perturbΓ so that it doesn’t intersect any of the vertices or edges in MeshB and
“cleanly” intersects the facets in MeshB (i.e., so that the curve does not run tangentially within any
facet for any positive distance). Since the originalΓ lies entirely within the interior ofAj , and the
necessary perturbations (to avoid vertex and edge intersections and to assure clean face intersections)
can be arbitrarily small, the perturbedΓ can be assumed to lie entirely within the interior ofAj as
well. In this case, all theBi encountered byΓ when travelling fromxi1 to xi2 form a face-connected
sequence and all are members ofBAj . This shows thatBAj is face-connected. Q.E.D.

Algorithm 4 is the “payoff” algorithm where we take our intersection volumes that have been previously
computed in Algorithms 1-3 and use them to map a cell fieldfA on meshA to a cell fieldfB on mesh
B. At the end of Algorithm 1, the overlap volumes(i, j, Vij) stored invol list were sorted into a row-
packed sparse matrixIntVols which is actually three arraysrowoff , col , andvol which represent
a standard row-packed sparse matrix data structure. We also assume that the volumes of the elements in
both meshes and the column and row sums of theVij have been computed and are available. Algorithm 4
takes the input cell fieldfA, along withIntVols , and the two logical flagsexactly conservative ,
andpreserve constants and then mapsfA to fB by sparse matrix multiplication. If neither boolean
flag is true, the “raw” mapping (I.6) is used. Ifexactly conservative is .true. then we use the
exactly conservative mapping (I.7). If preserve constants is .true. , we use the weighted average
mapping (I.8). (We call the flagpreserve constants because (I.8) preserves constants in the sense
that if fA ≡ k, thenfB ≡ k.)

It is not legal for bothexactly conservative andpreserve constants to be.true. Indeed,
in order to obtain both of those properties simultaneously, an iteration would be necessary and in fact both
those properties are inconsistent with each other unlessVolume(ΩA) = Volume(ΩB) exactly.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 159

I.3.2 Practical Geometry Considerations

I.3.2.1 Sloppiness at the Boundary

In practice we cannot haveΩA = ΩB exactly. For example, if we alternately discretize some sphereS
using tetrahedra on meshA and hexahedra on meshB, we will not usually haveΩA = ΩB and certainly
not ΩA = S or ΩB = S. This is assuming the tetrahedra have planar facets and the hexahedra have
bilinear facets. If the boundary nodes of the hex and tet grids reside on∂S, thenvol(S) > vol(ΩA) and
vol(S) > vol(ΩB). In fact, even with a large number of elements, although

vol(S) ≈ vol(ΩA) ≈ vol(ΩB),

probably none of these volumes will be exactly equal. In this scenario, parts of the tet mesh might slightly
poke out ofΩB. When Algorithm 1 calls Algorithm 2, it is called with the centroidsx of some elements in
ΩA. (Here the “centroid” is the cheap-to-compute average position of the vertices of the element.) Since the
centroid ofAj is at least a distanceir(Aj) from points on the surface ofAj (whereir(Aj) denotes the radius
of the largest sphere inscribed inAj centered on the centroid), we have that the elementAj can stick out of
ΩB by at leastir(Aj) and the algorithm will still work. So our formal assumptionΩA ⊆ ΩB is relaxed so
that elements of meshA can stick out ofΩB to this small degree.

I.3.2.2 Element Blocks

The unstructured mesh data structure supports the concept of “element blocks” which are effectively a
decomposition of the mesh into regions. Thus, instead of there being a singleΩA, there is a decomposition

ΩA =
KA⋃
k=1

Ωek
A

and a decomposition

ΩB =
KB⋃
k=1

Ωfk
B .

The simplest case isek = k and fk = k, but the element block numbers need not be sequential. In
the general case, we assume that{ek | 1 ≤ k ≤ KA} ⊆ {fk | 1 ≤ k ≤ KB} and there is for each
1 ≤ k ≤ KA a correspondence betweenΩek

A andΩek
B . We assume thatΩek

A ⊆ Ωek
B , or at least to within a

certain tolerance as explained in the previous discussion. Now the actual implentation of Algorithm 4 has
an input parameterstrict which determines if the algorithm will pay attention to element blocks. This
parameter is by default.true. . In this case, if we also haveexactly conservative=.true. , our
algorithm assures conservation within each region,∫

Ω
ek
B

fB dV =
∫

Ω
ek
A

fA dV.

160 TRUCHAS Physics and Algorithms LA-UR-08-0819

If strict=.true. andpreserve constants=.true. , our mapping will assure preservation of
independent constants in each region:

fA
∣∣
Ω

ek
A
≡ constk ⇒ fB

∣∣
Ω

ek
B
≡ constk.

Equivalently, the mapped field valuefB
i will be a weighted average of the source field valuesfA

j that come
from elementsAj that intersectBi and whose element block numbers match that ofBi.

I.3.2.3 Relaxation of Face-Connected Mesh Assumption

In practice, element blocks can be disconnected from each other. We have enhanced the robustness of our
actual implementations of Algorithm 1 so that MeshA need not be all face-connected. Also, the actual
implementation of Algorithm 2 has also been enhanced so that MeshB need not be face-connected. In
the actual implementations of these algorithms, if a connected component of the mesh has been searched
without success, we search other connected components, until we have searched all connected components.
Clearly, this will endanger our algorithm’sON log N time complexity bound. However, if we have for each
element block inclusionΩek

A ⊆ Ωek
B that both element blocksΩek

A andΩek
B are face-connected, then we will

traverse the element blocks of meshA efficiently with Algorithm 1 and we will possibly have to search the
whole MeshB in Algorithm 2 whenever the pointx provided as input to the algorithm has switched to a
new face-connected component of MeshA. The additional time spent is thus bounded by(KA − 1)nB,
whereKA is the number of face-connected element blocks of MeshA. If we call KA a “constant”, then
sincenB < N , we have the additional time complexity isO(N), and so the overall time complexity bound
of O(N log N) still stands for grid mapping. Algorithm 3 still assumes face-connectedness of the set of
nonzero intersection volumes

BAj = {Bi | |Bi ∩Aj | > 0}.

This is not a problem if for each element block inclusionΩek
A ⊆ Ωek

B we have thatΩek
B is face-connected;

otherwise, intersection volumes may be missed by Algorithm 3.

So in summary, we have relaxed the face-connectedness requirements of MeshA and MeshB, but to
preserveO(N log N) complexity and to preserve the accuracy of the intersection volume calculation, we
still require that for each element block inclusionΩek

A ⊆ Ωek
B that both element blocksΩek

A andΩek
B are

face-connected.

I.3.2.4 Gap Elements

Certain applications in TRUCHAS requiregap elementsthat have zero volume but are face-connected to the
rest of the mesh. Thus, for example, a face-connected path between two normal, non-gap elements may

LA-UR-08-0819 TRUCHAS Physics and Algorithms 161

involve traversal through a zero-thickness gap element. In the grid mapping software, we say that element
E is a gap element if

volume(E) ≤ εV volume(ball(E)),

whereball(E) is the smallest ball centered at the centroid of the vertices ofE which contains all the vertices
of E, andεV is a small tolerance. (In the software, this tolerance is calledeps vol frac and is currently
set to10−8.)

Algorithms 1-3 will never deal with gap elements, but instead will always “step around” a gap element and
look at its neighbors. As a consequence, there are no entries corresponding to gap elements in the volume
intersection matrixVij .

I.3.3 Treatment of nonplanar faces

The polyhedral zoo of elements processed by our algorithm all have facets which are either planar triangles
or bilinear quadradrilatals. The elements possessing some or all bilinear quads for facets are hexahedra,
pyramids, and triangular prisms. The key subroutinePlane Poly Int3D described in SectionI.3.4 per-
forms intersections of half-spaces (defined by oriented planes) with planar polyhedra. Thus we need to
“planarize” any nonplanar facets before callingPlane Poly Int3D .

We proceed as follows. First it is easy to prove that for an elementE and a bilinear quad facetk, there exists
a “best fit” planePk that passes through the midpoints of all four edges of the facet as well as through the
centroid of the four vertices. In fact, if the vertices of the quad are labelledx1,x2,x3,x4 in cyclical order,
the normal of this plane is

n̂k = ± (x2 − x4)× (x3 − x1)
||(x2 − x4)× (x3 − x1)||

. (I.10)

(We choose the sign so thatn̂k is an “inward” normal pointing towards the interior of the elementE.) The
equation of the planePk is thus

n̂k · (x− xcen
k) = 0,

wherexcen
k is the centroid of the vertices of the face,xcen

k = (x1 + x2 + x3 + x4)/4. Now let Dk be
the half-space bounded byPk with normaln̂k pointing towards the interior ofDk. (If insteadk is a planar
triangular face, thenDk is simply the half-space bounded by the (correctly oriented) planePk containing
facek.) We say theplanarizationof E is given by

planarization(E) = ∩nfack=1 Dk, (I.11)

wherenfac is the number of faces ofE. planarization(E) is our stand-in forE when intersection volumes
need to be computed in Algorithm 3. The elementAj is initially planarized, and then it is intersected with

162 TRUCHAS Physics and Algorithms LA-UR-08-0819

the “best fit” planes of the faces of elementBi in order to compute the approximationVij ≈ Bi∩Aj . If E is
planar, convex, thenplanarization(E) = E and no harm is done. IfE has slightly nonplanar facets and the
approximating planes do not intersect with dihedral angles greater thanπ, thenplanarization(E) will be a
reasonably good approximation toE. If E has highly nonplanar facets or if the approximating planesPk

have some dihedral angle intersections that exceedπ, thenplanarization(E) will be a poor approximation
to E so that the approximationVij may not be close to the true intersection volume, but this is a situation
that should not occur for many elements in well-constructed meshes.

Now regarding our treatment of Algorithm 2, suppose two elementsBi1 andBi2 share the same quad face.
Say that face isk1 in an ordering of the faces ofEi1 and say that face isk2 in an ordering of the faces of
Ei2 . Then we have thatPk1=Pk2 (the planarizations of the two adjacent elements agree on their common
face),n̂k1 = −n̂k2 , and{Dk1 , Dk2} form a nonoverlapping partition of the spaceIR3. However, it doesnot
follow from this that

{planarization(B1), planarization(B2), . . . , planarization(BnB)} (I.12)

would form a nonoverlapping polyhedral decomposition of the domainΩB = ∪iBi. In fact, there can be
“holes” in the way (I.12) coversΩB in the neighborhood of edges. (See FigureI.1.) This means that in
Algorithm 2, if we interpret the statement

If x on “wrong” side of facek . . .

to mean

If x on “wrong” side of planePk . . . , (I.13)

then we have a rapid test for determining whether to traverse across a face, but it is conceivable thatx in
meshA will not be locatable in meshB, if it falls in one of the “holes”, such as depicted in FigureI.1. To
prevent falling into holes, for the purposes of Algorithm 2, we use (I.13), but with respect to an elementB
and a facek, we move the position ofPk back so that all of facek is on the “correct” side ofPk. With this
readjustment, the set (I.12) will form a cover ofΩB with some overlaps. This means that in the neighborhood
of a face, pointx may be considered to be inside of more than one element. This is acceptable, since the
first such element encountered will be returned by Algorithm 2 and will be used as the seed element for
Algorithm 3.

I.3.4 Computing Intersections

We employ an algorithm for computing the intersection volumeVij = |Bi∩Aj | exactly in the case that both
elementsAj from meshA andBi from meshB are convex planar polyhedra. Two key routines are used:
Plane Poly Int3D intersects a half-space with a planar convex polyhedron and returns the intersection
which, if nonempty, is itself a planar convex polyhedron.Volm Poly3D computes the volume of a planar
convex polyhedron by decomposing it into tetrahedra and then summing the volumes of the tetrahedra.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 163

Figure I.1: Hole created by planarization: Curved interface between elementsE1, E2 is replaced by common
“best fit” planeP12 and similarly for the other interfaces. This creates a hole—a region shown by the gray
area that would not be considered to be within any element. (2-D schematic of the 3-D situation.)

I.3.5 Weighted Average vs. Exactly Conservative

Since the “weighted average” mapping ((I.8) invoked withpreserve constants in Algorithm 4) has
the desirable property of not creating any new local minima or maxima (I.4), it is the mapping we have used
most often in practice. A typical case for our Truchas code is that we have a set of “volume fraction” fields
f (1), f (2), . . . , f (P) that have the property

P∑
p=1

f
(p)
i = 1, ∀i. (I.14)

Since “the sum of the weighted average” is the “weighted average of the sum”, it is easy to prove that the
mapped fields (when using the weighted average mapping (I.8)) will obey the “summing to 1” property
(I.14) as well. This property will not be preserved by the “raw” or “exactly conservative” mappings.

Since it is tempting to use the non-conservative weighted average mapping in most situations, we compute a
bound on theL1 error between the conservative and weighted average mappings. Letf(x) denote the source
cell field on meshA; we take this to be a density of some sort of substance and so make the assumption that
f(x) ≥ 0. Let f cons andfwa be the conservative and weighted average fields derived over meshB by using

164 TRUCHAS Physics and Algorithms LA-UR-08-0819

(I.7) and (I.8) respectively. Then

∫
ΩB

|f cons(x)− fwa(x)| dV

=
∑

i

|Bi|
∣∣∣f cons

i − fwa
i

∣∣∣
=

∑
i

|Bi|

∣∣∣∣∣∣ 1
|Bi|

∑
j

Vij
|Aj |∑
m Vmj

fj −
1∑
k Vik

∑
j

Vijfj

∣∣∣∣∣∣
=

∑
i

∑
j

∣∣∣∣Vij

(
|Aj |∑
m Vmj

− |Bi|∑
k Vik

)
fj

∣∣∣∣
≤

∑
i

∑
j

Vijfj

(∣∣∣∣ |Aj |∑
m Vmj

− 1
∣∣∣∣+ ∣∣∣∣ |Bi|∑

k Vik
− 1
∣∣∣∣)

=
∑

j

(
fj

∑
i

Vij

)∣∣∣∣ |Aj |∑
m Vmj

− 1
∣∣∣∣+∑

i

∑
j

Vijfj

∣∣∣∣ |Bi|∑
k Vik

− 1
∣∣∣∣

≈
∑

j

(∫
Aj

f(x) dV

)∣∣∣∣ |Aj |∑
m Vmj

− 1
∣∣∣∣+∑

i

(∫
Bi

f(x) dV

) ∣∣∣∣ |Bi|∑
k Vik

− 1
∣∣∣∣

≡ FA ·EA + FB ·EB (I.15)

Here, we have defined

FA
j ≡

∫
Aj

f(x) dV FB
i ≡

∫
Bi

f(x) dV

as being, respectively, the integral off over an element of MeshA, and the integral off over an element of
MeshB. We have defined

EA
j ≡

∣∣∣∣ |Aj |∑
m Vmj

− 1
∣∣∣∣ EA

i ≡
∣∣∣∣ |Bi|∑

k Vik
− 1
∣∣∣∣

as being, the relative volume errors caused by our decomposition of elementsAj in meshA and elements
Bi in meshB, respectively.

Now since

∣∣∣∣∫
ΩA

f(x) dV −
∫

ΩB

fwa(x) dV

∣∣∣∣ =
∣∣∣∣∫

ΩB

f cons(x) dV −
∫

ΩB

fwa(x) dV

∣∣∣∣
≤

∫
ΩB

|f cons(x)− fwa(x)| dV,

LA-UR-08-0819 TRUCHAS Physics and Algorithms 165

we have that by (I.15), FA ·EA + FB ·EB is also bound for the conservation error offwa.

So we can usefwa and be sufficiently conserving if the relative volume error vectorsEA andEB are
sufficiently small. In fact, with our algorithm, the error vector entries will be identically zero for planar-
faceted elements that are completely covered by planar-faceted elements from the other mesh. Errors creep
in the more the elements are curved, and the more the elements from the two meshes fail to match up at
the boundary. The worst case would be mapping a fieldf which is only nonzero near a curved boundary
∂ΩA and where the characteristic element sizes inΩA, ΩB differ greatly. In this case, the error vectorsEA,
EB would be large (due to poor matching of the meshes at∂ΩA) precisely on those elements where the
entries of the integrated quantity vectorsFA, FB are nonzero. In fact in our Truchas code we have a field
representing the creation of inductive heating near the surface of a conductor being mapped from a tet mesh
to a hex mesh. Only for this field do we feel the need to use the conservative mapf cons rather than the
weighted averagefwa.

I.4 Numerical Results

We show results of our mapping algorithm on a “curved pipe with slit” geometry. In FigureI.2, we see a tet
grid with 140651 elements on which a sample cell fieldf((x, y, z)) = 1 + sin(z) has been defined on the
elements, where for each tet, thez value used to evaluatef(z) for that tet is taken to be at the centroid of the
tet. (In the figure, the geometry fits in the box[0, 12] × [0, 12] × [−5, 5] andz is in the ‘up’ direction.) In
FigureI.3, the fieldf has been mapped conservatively to a cell field over a hex mesh of the same geometry.
The hex mesh has 42496 elements, and the number of intersection volumesVij that are nonzero in the
map between the two meshes is 1032910. Here we have used theexactly conservative option,
so the integral of the field is same 513.9857790995 on both meshes using double precision computation.
Although both tet and hex meshes attempt to discretize the same geometry, the boundary curvature causes
the volumes of the two meshes to be different: 529.68 on the tet-discretized region and 529.34 on the hex
discretized region. Thus, to accomodate the mesh volume differences and still be exactly conservative, it is
not surprising the the maximum value of the field is 2.0252 on the hex mesh, which represents just over a
1% overshoot of the maximum value 2.0000 on the tet mesh. We note that the minimum value on the hex
mesh is 0.0006 which does not undershoot the minimum value of 0.0000 on the tet mesh. This is because by
(I.7), the values of the mapped field using theexactly conservative option are still a positive linear
combination of local source field values, so that negative values cannot arise when mapping a non-negative
field.

In Figure I.4 we show the mapped field over the same hex mesh, where we have used the
preserve constants (weighted average) option. Here, the integral of the field over the destination
mesh agrees only to 3 decimal places (it is 513.66); however, the global minima/maxima of the mapped
field are 0.0006 and 1.9994 respectively, which are within the corresponding bounds of the source tet mesh.

The timings on an Apple G5 workstation with IBM XLF compiler are consistent with the claimedN log N

166 TRUCHAS Physics and Algorithms LA-UR-08-0819

Tet Elements Hex Elements NonzeroVij Time Alg. 1-3 Time Alg. 4
nA nB N raw cons wted avg

2450 792 16042 0.36s 0.14ms 0.37ms 0.13ms
11761 6500 106127 2.73s 1.27ms 3.50ms 1.27ms

140651 42496 1032910 25.33s 23.98ms 91.60ms 24.13ms

Table I.1: Timings for 3 hexmesh-to-tetmesh mappings on curved pipe geometry

scaling for the building of the sparse mapping matrix (Algorithms 1-3). Using the same curved pipe geome-
try we computed mappings between three pairs of grids, always mapping from an all-tet mesh to an all-hex
mesh. The timings are given in Table 1. We see that the time for computing the sparse matrixVij is in fact
growing linearly withN , taking about25µs per overlap entry. We note that Algorithms 1-3 need only be
calledonce. Then any number of fields may be mapped by calling Algorithm 4 for each field. Algorithm
4 is very cheap compared to Algorithms 1-3 and it in fact has complexityO(N). Comparing the second
and third rows in Table 1, it appears that Algorithm 4 time complexity is superlinear. However, this simply
results from the fact that the vector of source field values over the tet mesh can completely fit in cache mem-
ory for the intermediate-sized case and cannot completely fit in cache memory for the largest-sized case on
the Apple G5 architecture employed.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 167

Figure I.2: Tet mesh on slitted curved pipe geometry showing source fieldf(x) = 1 + sin(z)

168 TRUCHAS Physics and Algorithms LA-UR-08-0819

Figure I.3: Hex mesh on same geometry showing mapped field withexactly conservative option.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 169

Figure I.4: Hex mesh on same geometry showing mapped field withpreserve constants (weighted
average) option.

170 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix J

Nucleation and Growth

J.1 Rappaz-Th́evoz Model with One-Way Coupling

We have implemented the method of Thévoz et. al. for modeling microstructure formation during solid-
ification [93] using one-way coupling. In this method, computational cells that are actively undergoing
solidification (0 < fs < 1) are subjected toN explicit “microscopic” timesteps per implicit “macroscopic”
timestep (δt = ∆t/N). In this case, the macroscopic heat flow calculation provides the cell an enthalpyH
and change in enthalpy∆H for the cell, and the microscopic time evolution will evolve the nuclei number
densityn and average grain radiusR in the cell. From these quantities, the solid fractionfs can be updated.
Since

δH = cpδT − Lδfs, (J.1)

we then can obtain the change in temperatureδT for the micro-timestep. Performing thisN times, we obtain
the change inT for the macro-timestep. (Note: we avoid calling this change “∆T ”, since the symbol∆T is
already reserved to denote the undercoolingTl − T whereTl is the liquidus temperature.)

Thus as opposed to the usual assumed monotonic relationship between enthalphy and temperature, it is now
possible to modelrecalescencewhere a sudden increase infs actually leads to an increase in temperature,
even while heat is being removed from the cell. At this point, the release of latent heat due to solidification
exceeds the heat being removed from the cell, the temperature rises, and nucleation of new grains is halted.

J.1.1 Nucleation Model

As in [93], it is assumed that nuclei number density at a given undercooling is given by the integral of a
Gaussian nucleation site density distribution from zero undercooling to the current undercooling. (However,

LA-UR-08-0819 TRUCHAS Physics and Algorithms 171

nuclei number density increase is permanently halted at recalescence.) The Gaussian distribution is charac-
terized by its standard deviation∆Tσ, its mean (located at undercooling∆TN) and its integralnmax. These
three parameters are determined experimentally for each melt.

J.1.2 Growth Model

The solid fraction in the Rappaz-Thévoz model is given by

fs(t) = n(t) · 4
3
πR3(t) · fi(t),

wherefi is the internal solid fraction which corresponds to the fraction of solid within the expanding spher-
ical envelope of the grains (which have radiusR(t)). We write

δfs = n(t) ·
(

4πR2δR · fi +
4
3
πR3 · δfi

)
, (J.2)

if one neglects the changeδn. (One can see the absurdity of including aδn term as given by the product rule
for derivatives, since such a term would imply the instantaneous creation of grainsat radiusR instead of
radius0. However, omission of theδn term does not change the fact that the model is still a simplification
because it assumes asingleradiusR describes the distribution of grains in the nucleation and growth phases.)

Assuming (J.2), to computeδfs, we need to knowδR andδfi. First,δR is naturally obtained by knowing
the velocityv of the dendrite tip. This velocity is obtained from the model of Lipton et. al. [94] which relates
v to the known undercooling of the grain. Second, the solute diffusion model of Rappaz and Thévoz [95]
relatesfi to the the Peclet numberPe ≡ Rv

2D of the grain and the supersaturation at the dendrite tip. The
supersaturation is

Ω ≡ c∗ − c0

c∗(1− k)
,

which can be related to the undercooling by the phase diagram. (Herec∗ is the concentration at the dendrite
tips, c0 is the alloy concentration, andk is the partition coefficient.) Since we knowR, v, andD (solute
diffusion coefficient), we can compute Pe. Thus we have enough information to obtainδfi. Knowing δfi

andδR gives usδfs by (J.2). Knowingδfs andδH gives usδT by (J.1).

J.1.3 One-Way Coupling Assumption

Ideally the changeδT computed by our micro model should be fed back to the macro model. However, since
the macro model is doing an implicit time step, it will be likely that this feedback from the micro model
would be requested many times per macro time step. This is in practice prohibitively expensive. Instead,

172 TRUCHAS Physics and Algorithms LA-UR-08-0819

we try to only compute the maximum undercooling and grain size at recalescence. So we are interested in
running the micro model for only a short period of time between when the temperature has dropped below
the liquidus temperature and when recalescence takes place. We then make the assumption that during
this critical period of time, the macro change of enthalpy is determined by thermal gradients set up by
temperature differences on a macroscopic scale and not by thermal gradients resulting from local release
of latent heat. In this case, it is justified in running a standard macro solidification model and using the
resulting enthalpy changes to drive the micro model. The micro model then computes temperature changes,
but these temperature changes are not fed back into the macro model.

In effect, from the onset of solidification to recalescence, there are two different temperatures:Tmacro and
T . Tmacro is not used by the micro model, except that whenTmacro cools so thatTmacro = Tl, the micro
model is starting withT = Tl as well. The micro temperatureT then is allowed to diverge fromTmacro.
T is used in the nucleation and growth model until recalescence, at which time the model has predicted the
maximum undercooling∆T = Tl−T and the corresponding grain size. At this point, the micro model is not
used any more. The TRUCHAS output only contains the macro temperatureTmacro; the micro temperature
is not explicitly output. The only fields in the TRUCHAS output relating to the micro model are maximum
undercoolingMax Underc and grain radiusGrain R which again do not affect the macro code in any
way.

The effect of the one-way coupling assumption was investigated in [96] by comparing to a fully-coupled
model. There it was found that one-way coupling causes undercoolings to be predicted accurately to within
one degree celsius all along the length of a one-dimensional casting. However, the error observed was a
systematic overestimation of undercooling, resulting in a systematic overestimation of nuclei density, and
consequently systematic underestimation of grain size.

J.1.4 Test Problem

In the TRUCHAStest suite, the problemgrain growth rnt mold.inp tests this model. The parameters
of interest appear in thePHASECHANGEPROPERTIESnamelist:

phase change model: Equal tograin growth rnt so that this model is called.

deltempnucl: This is∆TN , the undercooling where the Gaussian nucleation site density distribution
peaks.

deltempsigma: ∆Tσ, the width of the distribution.

ndmaxnucl: nmax, integral of distribution.

a2 coeff, a3 coeff: a2, a3, coefficients in cubic polynomialv(∆T) = a2(∆T)2 + a3(∆T)3 that
gives tip velocity as a function of undercooling. This polynomial is a fit to thev(∆T) function given
by the Lipton model.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 173

forward diffusion coefficient: D, solute diffusion coefficient.

full coupling flag: Set to zero, because full coupling for the Rappaz-Thévoz model is not sup-
ported.

174 TRUCHAS Physics and Algorithms LA-UR-08-0819

Appendix K

Displacement, Sliding Interface and Contact
Constraints

K.1 Notation

u - the displacement vector for the entire domain
−→
u j - the displacement vector (in ndim dimensions) for nodej
−→
f j - the portion of the force vector at nodej that is a function of the displacement vectoru
−→
r j - the portion of the force vector at nodej that is a function of source terms such as thermal strain

s - the relative displacement of the nodes across a gap interfacen̂ · (−→u k −
−→
u j)

Λ - a contact function for a gap interface that depends ons . Λ = 1 for nodes in contact but not in
tension, andΛ = 0 for nodes not in contact.

K.2 One normal displacement

For specified displacement magnituded along surface normal̂n

([I]− [n̂n̂T])(
−→
f j +

−→
rj)− c[n̂n̂T](

−→
u j − dn̂) = 0 (K.1)

or

([I]− [n̂n̂T])
−→
f j − c[n̂n̂T]

−→
u j = −([I]− [n̂n̂T])

−→
rj − c[n̂n̂T]dn̂ (K.2)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 175

~uj

n̂

j

K.2.1 Preconditioning matrix

The displacement constraints are added to the preconditioning matrix by replacing the coefficients forfj

with the coefficients of the left hand side of equationK.2.

K.3 Two normal displacements

~uj
j

n̂1

n̂2

1

2

t̂

Whered1 andd2 are specified displacements in directionsn̂1 andn̂2, and a vector along the edge between
the two surface iŝt ∝ n̂1 × n̂2,

[t̂t̂T](
−→
f j +

−→
rj)− c([I]− [t̂t̂T])(

−→
u j −

−→
a) = 0 (K.3)

or

[t̂t̂T]
−→
f j − c([I]− [t̂t̂T])

−→
u j = −[t̂t̂T]

−→
rj − c([I]− [t̂t̂T])

−→
a (K.4)

where the vectora is constructed as

−→
a = b1n̂1 + b2n̂2 (K.5)

176 TRUCHAS Physics and Algorithms LA-UR-08-0819

where [
b1

b2

]
=

1
1− cos2 θ

[
1 − cos θ

− cos θ 1

] [
d1

d2

]
(K.6)

andcos θ = n̂1 · n̂2

K.3.1 Preconditioning matrix

The displacement constraints are added to the preconditioning matrix by replacing the coefficients forfj

with the coefficients of the left hand side of equationK.4.

K.4 Three normal displacements

n̂1

n̂2

j
n̂3

Solve for unique
−→
a once during initialization,

 n̂1

n̂2

n̂3

 [
−→
a] =

 d1

d2

d3

 (K.7)

and use the trivial equation

c
−→
u j = c

−→
a (K.8)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 177

K.4.1 Preconditioning matrix

The displacement constraints are added to the preconditioning matrix by replacing the coefficients forfj

with the coefficients of the left hand side of equationK.8. In this case only the diagonal coefficients are
non-zero.

K.5 One normal constraint

~uj

k

~uk

n̂

j

For nodej with contact functionΛ :

([I]−Λ[n̂n̂T])(
−→
f j +

−→
rj)+Λ[n̂n̂T](

−→
f j +

−→
rj +

−→
f k+

−→
rk)+Λc[n̂n̂T](

−→
u k−

−→
u j) = 0 (K.9)

or

−→
f j + Λ[n̂n̂T](

−→
f k +

−→
r k + c(

−→
u k −

−→
u j)) = −−→rj (K.10)

K.5.1 Preconditioning matrix

In the current version of the code normal constraints and contact are not incorporated in the preconditioning
matrix.

−→
f j − Λ[n̂n̂T](

−→
f j − c(

−→
u k −

−→
u j)) = −([I]− Λ[n̂n̂T])

−→
rj (K.11)

178 TRUCHAS Physics and Algorithms LA-UR-08-0819

K.6 Two normal constraints

There are two normal vectorŝn andm̂, one for each interface and one unit tangent vectort̂ ∝ n̂× m̂.

n̂

m̂

t̂
j

k

n̂

m̂

t̂
j

k

l

n̂ m̂

t̂

j

k

l

For nodej there are multiple possibilities:

K.6.1 No Contact

−→
f j = −−→rj (K.12)

K.6.2 Contact with only one surface

As before:

gap interface 1

([I]−Λ[n̂n̂T])(
−→
f j +

−→
rj) + Λ[n̂n̂T](

−→
f j +

−→
rj +

−→
f k +

−→
r k + c(

−→
u k −

−→
u j)) = 0 (K.13)

which is equivalent to

−→
f j + Λ[n̂n̂T](

−→
f k +

−→
r k + c(

−→
u k −

−→
u j)) = −−→rj (K.14)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 179

or gap interface 2

([I]−Λ[m̂m̂T])(
−→
f j +

−→
rj)+Λ[m̂m̂T](

−→
f j +

−→
rj +

−→
f k +

−→
r k +c(

−→
u k−

−→
u j)) = 0 (K.15)

which is equivalent to

−→
f j + Λ[m̂m̂T](

−→
f k +

−→
r k + c(

−→
u k −

−→
u j)) = −−→rj (K.16)

K.6.3 Contact with two surfaces but only one node

Interpolating between no contact and contact with both surfaces,

([I]−Λ1Λ2([I]−[t̂t̂T]))(
−→
f j+

−→
r j)+Λ1Λ2([I]−[t̂t̂T])(

−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j)) = 0

(K.17)

or

−→
f j + Λ1Λ2([I]− [t̂t̂T])(

−→
f k +

−→
r k + c(

−→
u k −

−→
u j)) = −−→rj (K.18)

EquationsK.13, K.15 andK.17 can be combined to interpolate linearly between the various cases,

([I]− Λ1[n̂n̂T]− Λ2[m̂m̂T]− Λ1Λ2([I]− [n̂n̂T]− [m̂m̂T]− [t̂t̂T]))(
−→
f j +

−→
r j)+

(Λ1[n̂n̂T]+Λ2[m̂m̂T]+Λ1Λ2([I]−[t̂t̂T]−[n̂n̂T]−[m̂m̂T])(
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j)) = 0

(K.19)

or

−→
f j+(Λ1[n̂n̂T]+Λ2[m̂m̂T]+Λ1Λ2([I]−[t̂t̂T]−[n̂n̂T]−[m̂m̂T]))(

−→
f k+

−→
r k+c(

−→
u k−

−→
u j)) = −−→rj

180 TRUCHAS Physics and Algorithms LA-UR-08-0819

(K.20)

Note that ifn̂ = m̂ and there is only one gap node then we use equationK.10. If the angle between̂n and
m̂ is small, we may want to average the normals and also use equationK.10.

K.6.4 Contact with two surfaces but two different nodes

At an intersection of three different gap surfaces along an internal edge:

If Λkj is the contact function between nodesj andk,

([I]− Λkj [n̂n̂T]− Λlj [m̂m̂T]− ΛkjΛlj([I]− [n̂n̂T]− [m̂m̂T]− [t̂t̂T]))(
−→
f j +

−→
r j)+

Λkj [n̂n̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j))+Λlj [m̂m̂T](

−→
f j+

−→
r j+

−→
f l+

−→
r l+c(

−→
u l−

−→
u j))+

ΛkjΛlj(([I]− [t̂t̂T])(
−→
f j +

−→
r j +

−→
f k +

−→
r k +

−→
f l +

−→
r l +c(

−→
u k−

−→
u j)+c(

−→
u l−

−→
u j))−

[n̂n̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j))−[m̂m̂T](

−→
f j+

−→
r j+

−→
f l+

−→
r l+c(

−→
u l−

−→
u j))) = 0

(K.21)

If Ckj =
−→
f k +

−→
r k + c(

−→
u k −

−→
u j)

−→
f j+Λkj [n̂n̂T]Ckj+Λlj [m̂m̂T]Clj+ΛkjΛlj(([I]−[t̂t̂T])(Ckj+Clj)−[n̂n̂T]Ckj−[m̂m̂T]Clj) = −−→rj

(K.22)

K.6.4.1 Two surfaces, two nodes, but only one normal

If n̂ = m̂, then t̂ is indeterminate, and we have the sum of two single constraints (equationK.10). This
will be the case for a “T” intersection of three gap interfaces. (It is not currently possible to specify a
“T” intersection of only two interfaces, but the equations would be the same.) In this case the last term of

LA-UR-08-0819 TRUCHAS Physics and Algorithms 181

equationK.20 is eliminated:

([I]− Λkj [n̂n̂T]− Λlj [n̂n̂T] + ΛkjΛlj [n̂n̂T])(
−→
f j +

−→
r j)+

Λkj [n̂n̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j))+Λlj [n̂n̂T](

−→
f j+

−→
r j+

−→
f l+

−→
r l+c(

−→
u l−

−→
u j))+

ΛkjΛlj([n̂n̂T](
−→
f j +

−→
r j +

−→
f k +

−→
r k +

−→
f l +

−→
r l + c(

−→
u k −

−→
u j) + c(

−→
u l −

−→
u j))−

[n̂n̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j))−[n̂n̂T](

−→
f j+

−→
r j+

−→
f l+

−→
r l+c(

−→
u l−

−→
u j))) = 0

(K.23)

or

([I]− (Λkj + Λlj − ΛkjΛlj)[n̂n̂T])(
−→
f j +

−→
r j)+

[n̂n̂T](Λkj(
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j))+Λlj(

−→
f j+

−→
r j+

−→
f l+

−→
r l+c(

−→
u l−

−→
u j))+

ΛkjΛlj((
−→
f j +

−→
r j +

−→
f k +

−→
r k +

−→
f l +

−→
r l + c(

−→
u k −

−→
u j) + c(

−→
u l −

−→
u j))−

(
−→
f j +

−→
r j +

−→
f k +

−→
r k +c(

−→
u k−

−→
u j))−(

−→
f j +

−→
r j +

−→
f l +

−→
r l +c(

−→
u l−

−→
u j))) = 0

(K.24)

or (finally)

−→
f j +[n̂n̂T](Λkj(

−→
f k +

−→
r k +c(

−→
u k−

−→
u j))+Λlj(

−→
f l +

−→
r l +c(

−→
u l−

−→
u j))) = −−→r j

(K.25)

K.6.5 Preconditioning matrix

In the current version of the code normal constraints and contact are not incorporated in the preconditioning
matrix.

182 TRUCHAS Physics and Algorithms LA-UR-08-0819

n̂

m̂
t̂1

j

k

p̂

K.7 Three normal constraints

For nodej:

• Three gap unit normalŝn m̂ p̂

• Three tangent unit vectors:

t̂1 = n̂×m̂
‖n̂×m̂‖

t̂2 = m̂×p̂
‖m̂×p̂‖

t̂3 = p̂×n̂
‖p̂×n̂‖

Restricted to the case where there is only one node across all three gap surfaces:

([I]− Λ1[n̂n̂T]− Λ2[m̂m̂T]− Λ3[p̂p̂T] + Λ1Λ2([t̂1t̂T1] + [n̂n̂T] + [m̂m̂T]− [I])+

Λ2Λ3([t̂2t̂T2] + [m̂m̂T] + [p̂p̂T]− [I]) + Λ3Λ1([t̂3t̂T3] + [p̂p̂T] + [n̂n̂T]− [I])+

Λ1Λ2Λ3(2[I]− [n̂n̂T]− [m̂m̂T]− [p̂p̂T]− [t̂1t̂T1]− [t̂2t̂T2]− [t̂3t̂T3]))(
−→
f j +

−→
r j)+

(Λ1[n̂n̂T] + Λ2[m̂m̂T] + Λ3[p̂p̂T] + Λ1Λ2([I]− [t̂1t̂T1]− [n̂n̂T]− [m̂m̂T])+

Λ2Λ3([I]− [t̂2t̂T2]− [m̂m̂T]− [p̂p̂T]) + Λ3Λ1([I]− [t̂3t̂T3]− [p̂p̂T]− [n̂n̂T])+

Λ1Λ2Λ3(−2[I]+[n̂n̂T]+[m̂m̂T]+[p̂p̂T]+[t̂1t̂T1]+[t̂2t̂T2]+[t̂3t̂T3]))(
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(

−→
u k−

−→
u j))

= 0 (K.26)

or

LA-UR-08-0819 TRUCHAS Physics and Algorithms 183

−→
f j + (Λ1[n̂n̂T] + Λ2[m̂m̂T] + Λ3[p̂p̂T] + Λ1Λ2([I]− [t̂1t̂T1]− [n̂n̂T]− [m̂m̂T])+

Λ2Λ3([I]− [t̂2t̂T2]− [m̂m̂T]− [p̂p̂T]) + Λ3Λ1([I]− [t̂3t̂T3]− [p̂p̂T]− [n̂n̂T])−

Λ1Λ2Λ3(2[I]−[t̂1t̂T1]−[t̂2t̂T2]−[t̂3t̂T3]−[n̂n̂T]−[m̂m̂T]−[p̂p̂T]))(
−→
f k +

−→
r k +c(

−→
u k−

−→
u j))

= −−→rj (K.27)

K.7.1 Preconditioning matrix

In the current version of the code normal constraints and contact are not incorporated in the preconditioning
matrix.

K.8 One normal constraint and one normal displacement

Intersection between a gap interface and a surface with a displacement constraint:

k

n̂

j

S G

ν̂

n̂g

t̂

For nodej:

• Surface unit normal̂n

• Gap unit normal̂ng

• Tangent unit vector̂t = n̂×n̂g

‖n̂×n̂g‖

• Vector to complete the orthogonal setv̂ = t̂× n̂

184 TRUCHAS Physics and Algorithms LA-UR-08-0819

• cos θ = v̂ · n̂g

(([I]− [n̂n̂T])− Λ([I]− [n̂n̂T]− [t̂t̂T]))(
−→
f j +

−→
r j)+

Λ[v̂v̂T](
−→
f j +

−→
r j +

−→
f k +

−→
r k) + Λc cos2 θ[v̂v̂T](

−→
u k −

−→
u j)− c[n̂n̂T](

−→
u j − dn̂) = 0

(K.28)

or (using[n̂n̂T] + [v̂v̂T] + [t̂t̂T] = [I]):

([I]−[n̂n̂T])
−→
f j+Λ[v̂v̂T](

−→
f k+

−→
r k+c cos2 θ(

−→
u k−

−→
u j))−c[n̂n̂T]

−→
u j = −([I]−[n̂n̂T])

−→
r j−c[n̂n̂T]dn̂

(K.29)

K.8.1 Preconditioning matrix

In the current version of the code normal constraints and contact are not incorporated in the preconditioning
matrix. However, the normal displacement constraint is included in the same way as for a normal displace-
ment without the interface constraints.

K.9 Two displacements, one normal constraint

Intersection between a gap interface and a surface with a displacement constraint:

k

n̂1

j

S1 G

n̂g

t̂
S2

n̂2

• Surface unit normalŝn1 andn̂2

LA-UR-08-0819 TRUCHAS Physics and Algorithms 185

• Gap unit normal̂ng

• Tangent unit vector̂t = n̂1×n̂2
‖n̂1×n̂2‖

• cos θ = t̂ · n̂g

• d1 andd2 are specified displacements in directionsn̂1 andn̂2

−→
a = b1n̂1 + b2n̂2 (K.30)

where [
b1

b2

]
=

1
1− cos2 θ

[
1 − cos θ

− cos θ 1

] [
d1

d2

]
(K.31)

For nodej:

(1−Λ)[t̂t̂T](
−→
f j+

−→
r j)+Λ[t̂t̂T](

−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ(

−→
u k−

−→
u j))−c([I]−[t̂t̂T])(

−→
u j−

−→
a) = 0

(K.32)

or

[t̂t̂T]
−→
f j+Λ[t̂t̂T](

−→
f k+

−→
r k+c cos2 θ(

−→
u k−

−→
u j))−c([I]−[t̂t̂T])

−→
u j = −[t̂t̂T]

−→
r j−c([I]−[t̂t̂T])

−→
a

(K.33)

K.9.1 Preconditioning matrix

In the current version of the code normal constraints and contact are not incorporated in the preconditioning
matrix. However, the normal displacement constraint is included in the same way as for a two normal
displacements without the interface constraint.

K.10 One displacement, two normal constraints

• Surface normal̂n

• d is the magnitude of the specified displacement.

186 TRUCHAS Physics and Algorithms LA-UR-08-0819

• gap normal vectorŝm andp̂, one for each interface

• two unit tangent vectors:̂t1 = n̂×m̂
‖n̂×m̂‖ andt̂2 = n̂×p̂

‖n̂×p̂‖

• Vectorsv̂ andŵ are defined to make two orthogonal sets withn̂: v̂ = t̂1 × n̂ andŵ = t̂2 × n̂

• cos θ1 = v̂ · m̂ andcos θ2 = ŵ · p̂

For nodej there are multiple possibilities:

K.10.1 No Contact

([I]− [n̂n̂T])
−→
f j − c[n̂n̂T]

−→
u j = −([I]− [n̂n̂T])

−→
rj − c[n̂n̂T]dn̂ (K.34)

K.10.2 Contact with only one surface

As before:

gap interface 1

([I]−[n̂n̂T]−Λ1([I]−[n̂n̂T]−[t̂1t̂1
T]))(

−→
f j+

−→
r j)+Λ1[v̂v̂T](

−→
f j+

−→
r j+

−→
f k+

−→
r k+cos2 θ1c(

−→
u k−

−→
u j))

− c[n̂n̂T](
−→
u j − dn̂) = 0 (K.35)

Using([I]− [n̂n̂T]− [t̂1t̂1
T]) = [v̂v̂T] we obtain:

([I]−[n̂n̂T])
−→
f j+[v̂v̂T](

−→
f k+

−→
r k+cos2 θ1c(

−→
u k−

−→
u j))−c[n̂n̂T]

−→
u j = −([I]−[n̂n̂T])

−→
rj −c[n̂n̂T]dn̂

(K.36)

or gap interface 2

([I]−[n̂n̂T])
−→
f j+[ŵŵT](

−→
f k+

−→
r k+cos2 θ2c(

−→
u k−

−→
u j))c[n̂n̂T]

−→
u j = −([I]−[n̂n̂T])

−→
rj −c[n̂n̂T]dn̂

LA-UR-08-0819 TRUCHAS Physics and Algorithms 187

(K.37)

K.10.3 Contact with two surfaces but only one node

If Λ1 = Λ2 = 1

([I]−[n̂n̂T])(
−→
f j+

−→
rj +

−→
f k+

−→
r k+(cos2 θ1+cos2 θ2)c(

−→
u k−

−→
u j))−c[n̂n̂T]

−→
u j = −c[n̂n̂T]dn̂

(K.38)

EquationsK.36, K.37 andK.38 can be combined with contact functions for each interfaceΛ1 andΛ2,

([I]−[n̂n̂T]−Λ1([I]−[n̂n̂T]−[t̂1t̂1
T])−Λ2([I]−[n̂n̂T]−[t̂2t̂2

T])+Λ1Λ2([I]−[n̂n̂T]−[t̂1t̂1
T]−[t̂2t̂2

T]))(
−→
f j+

−→
rj)+

Λ1[v̂v̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ1(

−→
u k−

−→
u j))+Λ2[ŵŵT](

−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ2(

−→
u k−

−→
u j))+

Λ1Λ2(([I]−[n̂n̂T])(
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(cos2 θ1+cos2 θ2)(

−→
u k−

−→
u j))−[v̂v̂T](

−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ1(

−→
u k−

−→
u j))−

[ŵŵT](
−→
f j +

−→
r j +

−→
f k +

−→
r k + c cos2 θ2(

−→
u k −

−→
u j)))− [n̂n̂T]c(

−→
u j − dn̂) = 0

(K.39)

using the identities[n̂n̂T] + [t̂1t̂1
T] + [v̂v̂T] = [I] and[n̂n̂T] + [t̂2t̂2

T] + [ŵŵT] = [I],

([I]− [n̂n̂T]− Λ1[v̂v̂T]− Λ2[ŵŵT] + Λ1Λ2([v̂v̂T] + [ŵŵT]− ([I]− [n̂n̂T])))(
−→
f j +

−→
rj)+

Λ1[v̂v̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ1(

−→
u k−

−→
u j))+Λ2[ŵŵT](

−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ2(

−→
u k−

−→
u j))+

Λ1Λ2(([I]−[n̂n̂T])(
−→
f j+

−→
r j+

−→
f k+

−→
r k+c(cos2 θ1+cos2 θ2)(

−→
u k−

−→
u j))−[v̂v̂T](

−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ1(

−→
u k−

−→
u j))−

[ŵŵT](
−→
f j +

−→
r j +

−→
f k +

−→
r k + c cos2 θ2(

−→
u k −

−→
u j)))− [n̂n̂T]c(

−→
u j − dn̂) = 0

(K.40)

or

188 TRUCHAS Physics and Algorithms LA-UR-08-0819

([I]− [n̂n̂T])
−→
f j +(Λ1[v̂v̂T]+Λ2[ŵŵT]+Λ1Λ2([I]− [n̂n̂T]− [v̂v̂T]− [ŵŵT]))(

−→
f k +

−→
r k)+

(Λ1[v̂v̂T] cos2 θ1 + Λ2[ŵŵT] cos2 θ2 + Λ1Λ2(([I]− [n̂n̂T])(cos2 θ1 + cos2 θ2)−

[v̂v̂T] cos2 θ1 − [ŵŵT] cos2 θ2))(c(
−→
u k −

−→
u j))− c[n̂n̂T]

−→
u j

= −([I] − [n̂n̂T])
−→
r j − c[n̂n̂T]dn̂ (K.41)

Note that ifm̂ = p̂ and there is only one gap node then we use equationK.29. If the angle between̂m and
p̂ is small, we may want to average the normals and also use equationK.29.

K.10.4 Contact with two surfaces but two different nodes

n̂

m̂

j

k t̂1

t̂2

p̂

v

w

At an intersection of three different gap surfaces along an internal edge and a normal constraint at the free
surface (after equationK.40):

([I]− [n̂n̂T]− Λ1[v̂v̂T]− Λ2[ŵŵT] + Λ1Λ2([v̂v̂T] + [ŵŵT]− ([I]− [n̂n̂T])))(
−→
f j +

−→
rj)+

Λ1[v̂v̂T](
−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ1(

−→
u k−

−→
u j))+Λ2[ŵŵT](

−→
f j+

−→
r j+

−→
f l+

−→
r l+c cos2 θ2(

−→
u l−

−→
u j))+

Λ1Λ2(([I]−[n̂n̂T])(
−→
f j+

−→
r j+

−→
f k+

−→
r k+

−→
f l+

−→
r l+c cos2 θ1(

−→
u k−

−→
u j)+c cos2 θ2(

−→
u l−

−→
u j))−[v̂v̂T](

−→
f j+

−→
r j+

−→
f k+

−→
r k+c cos2 θ1(

−→
u k−

−→
u j))−

[ŵŵT](
−→
f j +

−→
r j +

−→
f l +

−→
r l + c cos2 θ2(

−→
u l −

−→
u j)))− [n̂n̂T]c(

−→
u j − dn̂) = 0

(K.42)

LA-UR-08-0819 TRUCHAS Physics and Algorithms 189

If Ckj =
−→
f k +

−→
r k + cos2 θ1c(

−→
u k −

−→
u j), Clj =

−→
f l +

−→
r l + cos2 θ2c(

−→
u l −

−→
u j), andΛkj andΛlj

are the contact functions between nodesj andk, andl andj respectively:

([I]− [n̂n̂T])
−→
f j + Λkj [v̂v̂T]Ckj + Λlj [ŵŵT]Clj+

ΛkjΛlj(([I]− [n̂n̂T])(Ckj + Clj)− [v̂v̂T]Ckj − [ŵŵT]Clj)− c[n̂n̂T]
−→
u j

= −([I] − [n̂n̂T])
−→
rj − c[n̂n̂T]dn̂ (K.43)

K.10.4.1 Two surfaces, two nodes, but only one normal

If m̂ = p̂, then sliding along the two surfaces should be allowed and we have the sum of two single con-
straints (equationK.29). This will be the case for a “T” intersection of three gap interfaces. (It is not
currently possible to specify a “T” intersection of only two interfaces, but the equations would be the same.)
In this case the last term of equationK.43 is not used:

([I]−[n̂n̂T])
−→
f j +Λkj [v̂v̂T]Ckj +Λlj [ŵŵT]Clj−c[n̂n̂T]

−→
u j = −([I]−[n̂n̂T])

−→
rj −c[n̂n̂T]dn̂

(K.44)

K.10.5 Preconditioning matrix

In the current version of the code normal constraints and contact are not incorporated in the preconditioning
matrix. However, the normal displacement constraint is included in the same way as for a normal displace-
ment without the interface constraints.

190 TRUCHAS Physics and Algorithms LA-UR-08-0819

Bibliography

[1] D. B. Kothe and R. C. Mjolsness. RIPPLE: A new model for incompressible flows with free surfaces.
AIAA Journal, 30:2694–2700, 1992.

[2] W.J. Rider and D.B. Kothe. Reconstructing volume tracking.Journal of Computational Physics,
141(2):112–152, 1998.

[3] J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension.
Journal of Computational Physics, 100:335–354, 1992.

[4] Y.D. Fryer, C. Bailey, M. Cross, and C.H. Lai. A control volume procedure for solving the elastic
stress-strain equations on an unstructured mesh.Applied Mathematical Modelling, 15:639–645, 1991.

[5] C. Bailey and M. Cross. A finite volume procedure to solve elastic solid mechanics problems in three
dimensions on an unstructured mesh.International Journal for Numerical Methods in Engineering,
38:1757–1776, 1995.

[6] C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow past an isolated airfoil with
trailing edge separation.AIAA Journal, 21:1525–1532, 1983.

[7] D. Kothe, D. Juric, K. Lam, and B. Lally. Numerical recipes for mold filling simulation. InModeling
of Casting, Welding, and Advanced Solidification Processes VIII, New York, 1998.1 TMS Publishers.

[8] D. B. Kothe. Perspective on Eulerian finite volume methods for incompressible interfacial flows.
In H. Kuhlmann and H. Rath, editors,Free Surface Flows, pages 267–331, New York, NY, 1998.
Springer-Verlag.

[9] W. J. Rider and D. B. Kothe. Stretching and tearing interface tracking methods. Technical Report
AIAA 95–1717, AIAA, 1995.2 Presented at the 12th AIAA CFD Conference.

[10] W. J. Rider and D. B. Kothe. Reconstructing volume tracking.Journal of Computational Physics,
141:112–152, 1998.

1Available athttp://www.lanl.gov/telluride .
2Available athttp://www.lanl.gov/telluride .

LA-UR-08-0819 TRUCHAS Physics and Algorithms 191

[11] S. J. Mosso, B. K. Swartz, D. B. Kothe, and R. C. Ferrell. A parallel, volume-tracking algorithm for
unstructured meshes. In P. Schiano, A. Ecer, J. Periaux, and N. Satofuka, editors,Parallel Computa-
tional Fluid Dynamics: Algorithms and Results Using Advanced Computers, pages 368–375, Capri,
Italy, 1997.3 Elsevier Science.

[12] D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, and J. I. Hochstein. Volume tracking of interfaces
having surface tension in two and three dimensions. Technical Report AIAA 96–0859, AIAA, 1996.4

Presented at the 34rd Aerospace Sciences Meeting and Exhibit.

[13] D.B. Kothe, M.W. Williams, K.L. Lam, D.R. Korzekwa, P.K. Tubesing, and E.G. Puckett. A second-
order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3-D unstruc-
tured meshes. InProceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, 1999.

[14] M. W. Williams, D. B. Kothe, and E. G. Puckett. Approximating interface topologies with applications
to interface tracking algorithms. Technical Report 99–1076, AIAA, 1999. Presented at the 37th
Aerospace Sciences Meeting.

[15] D. L. Youngs. Time-dependent multi-material flow with large fluid distortion. In K. W. Morton and
M. J. Baines, editors,Numerical Methods for Fluid Dynamics, pages 273–285, 1982.

[16] D. B. Kothe. PAGOSA: A massively-parallel, multi-material hydrodynamics model for three-
dimensional high-speed flow and high-rate deformation. Technical Report LA–UR–92–4306, Los
Alamos National Laboratory, 1992.

[17] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams. A
balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume
tracking framework.Journal of Computational Physics, 2005. to appear, also Los Alamos Technical
Report LA-UR-05-0674.

[18] M. Rudman. A volume-tracking method for incompressible multifluid flows with large density varia-
tions. International Journal for Numerical Methods in Fluids, 28:357–378, 1998.

[19] M. W. Williams. Numerical Methods for Tracking Interfaces with Surface Tension in 3-D mold filling
processes. PhD thesis, University of California, Davis, 2000.

[20] T. J. Barth. Recent developments in high order K-exact reconstruction on unstructured meshes. Tech-
nical Report AIAA–93–0668, AIAA, 1993. Presented at the 31st Aerospace Sciences Meeting and
Exhibit.

[21] P.C. Carman. Fluid flow through granular beds.Trans. Inst. Chem. Engrs., 15:150–166, 1937.

[22] T. W. Clyne and W. Kurz. Solute redisribution during solidification with rapid solid state diffusion.
Metallurgical Transactions A, 12:965–971, 1981.

3Available athttp://www.lanl.gov/telluride .
4Available athttp://www.lanl.gov/telluride .

192 TRUCHAS Physics and Algorithms LA-UR-08-0819

[23] D. A. Knoll, D. B. Kothe, and B. Lally. A new nonlinear solution method for phase change problems.
Numerical Heat Transfer, Part B, 35:436–459, 1999.

[24] P.S. Follansbee and U.F. Kocks. A constitutive description of the deformation of copper based on the
use of the mechanical threshold stress as an internal state variable.Acta Metallurgica, 36:81–93, 1988.

[25] O. C. Zienkiewicz.The Finite Element Method. McGraw-Hill, New York, NY, 1977.

[26] A. Bossavit. Computational Electromagnetism: Variational formulations, Complementarity, Edge
Elements. Academic Press, San Diego, CA, 1998.

[27] R. Hiptmair. Multigrid method for Maxwell’s equations.SIAM Journal on Numerical Analysis,
36(1):204–225, 1998.

[28] J.P. Hayes.Computer Architecture and Organization. McGraw-Hill, New York, second edition, 1988.

[29] W.D. Hillis and G.L. Steele. Data parallel algorithms.Communications of the ACM, 29(12):1170–
1183, 1986. Available on-line at http://portal.acm.org/citation.cfm?doid=7902.7903.

[30] Seehttp://www.mpi-forum.org/.

[31] M. Snir, S.W. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.MPI: The Complete Reference.
The MIT Press, Cambridge, MA, 1996.

[32] E. Lusk W. Gropp and A. Skjellum.Using MPI: Portable Parallel Programming with the Message
Passing Interface. The MIT Press, Cambridge, MA, 1994.

[33] The PGSLib package, now named Diablo95, is available athttp://diablo95.sourceforge.net/.

[34] T. J. Barth. Aspects of unstructured grids and finite-volume solvers for Euler and Navier-Stokes equa-
tions, 1995. VKI/NASA/AGARD Special Course on Unstructured Grid Methods for Advection Dom-
inated Flows, AGARD Publication R-787.

[35] Carl F. Ollivier-Gooch. Quasi-eno schemes for unstructured meshes based on unlimited data-dependent
least-squares reconstruction.Journal of Computational Physics, 133:6–17, 1997.

[36] M. Shashkov J. Hyman, J. Morel and S. Steinberg. Mimetic finite difference methods for diffusion
equations.Computational Geosciences, 6:333–352, 2002.

[37] Jim E. Morel, Michael L. Hall, and Mikhail J. Shashkov. A Local Support-Operators Diffusion Dis-
cretization Scheme for Hexahedral Meshes.Journal of Computational Physics, 170(1):338–372, June
2001. LA-UR–99-4358. Available online athttp://www.LANL.gov/Augustus .

[38] Michael L. Hall and Jim E. Morel. Diffusion Discretization Schemes in Augustus: A New Hexahedral
Symmetric Support Operator Method. InProceedings of the 1998 Nuclear Explosives Code Developers
Conference (NECDC), Las Vegas, NV, October 25–30 1998. LA-UR–98-3146. Available online at
http://www.LANL.gov/Augustus .

LA-UR-08-0819 TRUCHAS Physics and Algorithms 193

http://www.LANL.gov/Augustus
http://www.LANL.gov/Augustus

[39] Michael L. Hall, Jim E. Morel, and Mikhail J. Shashkov. A Local Support Operator Dif-
fusion Discretization Scheme for Hexahedral Meshes. Technical Report LA-UR–99-5834, Los
Alamos National Laboratory, October 21 1999. JOWOG 42 Presentation. Available online at
http://www.LANL.gov/Augustus .

[40] Markus Berndt, Konstantin Lipnikov, Mikhail Shashkov, Mary F. Wheeler, and Ivan Yotov. Super-
convergence of the velocity in mimetic finite difference methods on quadrilaterals.SIAM Journal on
Numerical Analysis, 43(4):1728–1749, 2005.

[41] R. Varga.Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.

[42] G. Strang.Linear Algebra and Its Applications. Harcourt Brace Jovanovich, 1976.

[43] G. Strang.Introduction to Applied Mathematics. Wellesley-Cambridge, 1986.

[44] G. H. Golub and C. F. Van Loan.Matrix Computations. Johns Hopkins University Press, 1989.

[45] Y. Saad.Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

[46] R. Barrett et al.Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, Philadelphia, PA, 1993.

[47] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Tech-
nical Report CMU-CS-94-125, Carnegie Mellon University, 1994.

[48] W. Scḧonauer and R. Weiss. An engineering approach to generalized conjugate gradient methods and
beyond.Applied Numerical Mathematics, 19:175–206, 1995.

[49] A. Meister. Comparison of different Krylov subspace methods embedded in an implicit finite volume
scheme for the computation of viscous and inviscid flow fields on unstructured grids.Journal of
Computational Physics, 140:311–345, 1998.

[50] A. Brandt. Multi-level adaptive solutions to boundary-value problems.Mathematics of Computation,
31:333–390, 1977.

[51] W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, PA, 1987.

[52] P. Wesseling.An Introduction to Multigrid Methods. Wiley, 1992.

[53] W. Shyy, S. S. Thakur, H. Ouyang, J. Liu, and E. Blosch.Computational Techniques for Complex
Transport Phenomena. Cambridge University Press, 1997.

[54] W. J. Rider. Approximate projection methods for incompressible flow: Implementation, variants and
robustness. Technical Report LA–UR–94–2000, Los Alamos National Laboratory, 1994.

[55] W. J. Rider, D. B. Kothe, E. G. Puckett, and I. D. Aleinov. Accurate and robust methods for variable
density incompressible flows with discontinuities. In V. Venkatakrishnan, M. D. Salas, and S. R.
Chakravarthy, editors,Workshop on Barriers and Challenges in Computational Fluid Dynamics, pages
213–230, Boston, MA, 1998.5 Kluwer Academic Publishers.

5Available athttp://www.lanl.gov/telluride .

194 TRUCHAS Physics and Algorithms LA-UR-08-0819

http://www.LANL.gov/Augustus

[56] C. Liu, Z. Liu, and S. McCormick. An efficient multigrid scheme for elliptic equations with discontin-
uous coefficients.Communications in Applied Numerical Methods, 8:621–631, 1992.

[57] R. Kettler and J. A. Meijerink. A multigrid method and a combined multigrid-conjugate gradient
method for elliptic problems with strongly discontinuous coefficients. Technical Report 604, Shell
Corporation, Rijswijk, The Netherlands, 1981.

[58] O. Tatebe. The multigrid preconditioned conjugate gradient method. In N. D. Melson, T. A. Manteuf-
fel, and S. F. McCormick, editors,Proceedings of the Sixth Copper Mountain Conference on Multigrid
Methods, pages 621–634, Copper Mountain, CO, 1993.

[59] E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider. A second-order projection
method for tracking fluid interfaces in variable density incompressible flows.Journal of Computational
Physics, 130:269–282, 1997.

[60] J. C. Meza and R. S. Tuminaro. A multigrid preconditioner for the semiconductor equations.SIAM
Journal on Scientific Computing, 17:118–132, 1996.

[61] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm for
groundwater flow simulations.Nuclear Science and Engineering, 124:145–159, 1996.

[62] B. Lally, R. Ferrell, D. Knoll, D. Kothe, and J. Turner. Parallel two-level additive-Schwarz precon-
ditioning on 3D unstructured meshes for solution of solidification problems. In T. Manteuffel and
S. McCormick, editors,Proceedings of the Eighth Copper Mountain Conference on Iterative Methods,
Copper Mountain, CO, 1998.6

[63] X.-C. Cai. A family of overlapping Schwarz algorithms for nonsymmetric and indefinite elliptic prob-
lems. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors,Domain-Based Parallelism and Problem
Decomposition Methods in Computational Science and Engineering, pages 1–19, Philadelphia, PA,
1995. SIAM.

[64] D. B. Kothe et al. The Telluride Project. For information, seehttp://www.lanl.gov/tellurideor contact
the project team attelluride@lanl.gov.

[65] D. B. Kothe, R. C. Ferrell, J. A. Turner, and S. J. Mosso. A high resolution finite volume method for
efficient parallel simulation of casting processes on unstructured meshes. InProceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 14–17,
1997.7

[66] J.E. Morel, J.E. Dendy, M.L. Hall, and S.W. White. A cell-centered Lagrangian-mesh diffusion differ-
encing scheme.Journal of Computational Physics, 103:286, 1992.

[67] D. J. Mavripilis and V. Venkatakrishnan. A 3D agglomeration multigrid solver for the Reynolds-
averaged Navier-Stokes equations on unstructured meshes.Intl. J. Numer. Meths. Fluids, 23:527–544,
1996.

6Available athttp://www.lanl.gov/telluride .
7Available athttp://www.lanl.gov/telluride .

LA-UR-08-0819 TRUCHAS Physics and Algorithms 195

[68] Barry Smith, Petter Bjorstad, and William Gropp.Domain Decomposition: Parallel Multilevel Meth-
ods for Elliptic Partial Differential Equations. Cambridge University Press1, Cambridge, 1996.

[69] D. B. Kothe and W. J. Rider. Constrained minimization for monotonic reconstruction. In D. Kwak,
editor, Proceedings of the Thirteenth AIAA Computational Fluid Dynamics Conference, pages 955–
964, 1997.8 AIAA Paper 97–2036.

[70] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symetric linear systems.SIAM J. Sci. Stat. Comput., 7:856, 1986.

[71] F. de la Vallee Poussin. An accelerated relaxation algorithm for the iterative solution of elliptic equa-
tions. SIAM Journal on Numerical Analysis, 2:340–351, 1968.

[72] A. Settari and K. Aziz. A generalization of the additive correction methods for the iterative solution of
matrix equations.SIAM J. Numer. Anal., 10:506–521, 1973.

[73] R.A. Nicolaides. On multiple grid and related techniques for solving discrete elliptic systems.J.
Comput. Phys., 19:418–431, 1975.

[74] J. A. Turner, R. C. Ferrell, and D. B. Kothe. JTpack90: A parallel, object-based Fortran 90 linear
algebra package. InProceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 14–17, 1997.9

[75] R. C. Ferrell, D. B. Kothe, and J. A. Turner. PGSLib: A library for portable, parallel, unstructured
mesh simulations. InProceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 14–17, 1997.10

[76] D.S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution of sys-
tems of linear equations.Journal of Computational Physics, 26:43–65, 1978.

[77] R.W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems.
SIAM J. Sci. Comput., 14:470–482, 1993.

[78] H. A. Van der Vorst. Bi-CGSTAB:a fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems.SIAM J. Sci. Stat. Comput., 13:631–644, 1992.

[79] J.E. Dendy. Black box multigrid.Journal of Computational Physics, 48:366, 1982.

[80] D. A. Knoll and W. J. Rider. A multigrid preconditioned Newton-Krylov method. Technical Report
LA–UR–97–4013, Los Alamos National Laboratory, 1998. Submitted for publication to theSIAM
Journal of Scientific Computing.

[81] D.A. Knoll, G. Lapenta, and J.U. Brackbill. A multilevel field solver for implicit kinetic, plasma
simulation.Los Alamos National Laboratory Report LA-UR-98-2159, to appear in J. Comput. Phys.,
1998.

8Available athttp://www.lanl.gov/telluride .
9Available athttp://www.lanl.gov/telluride .

10Available athttp://www.lanl.gov/telluride .

196 TRUCHAS Physics and Algorithms LA-UR-08-0819

[82] J. David Moulton, Joel E. Dendy Jr., and James M. Hyman. The black box multigrid numerical
homogenization algorithm.Journal of Computational Physics, 142:80, 1998.

[83] Carl B. Jenssen and Per A. Weinerfelt. Parallel implicit time-accurate Navier-Stokes computations
using coarse grid correction.AIAA Journal, 36:946–951, 1998.

[84] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations.SIAM Journal
on Scientific Computing, 11:450–481, 1990.

[85] N.N. Carlson and K. Miller. Design and application of a gradient-weighted moving finite element code
I: In one dimension.SIAM Journal on Scientific Computing, 19:728–765, 1998.

[86] K. Miller. Nonlinear Krylov and moving nodes in the method of lines.Journal of Computational and
Applied Mathematics, 183(2):275–287, 2005.

[87] D.R. Fokkema, G.L.G. Sleijpen, and H.A. Van Der Vorst. Accelerated inexact newton schemes for
large systems of nonlinear equations.SIAM Journal on Scientific Computing, 19:657–674, 1998.

[88] P. Michaleris, D. A. Tortorelli, and C. A. Vidal. Tangent operators and design sensitivity formulations
for transient nonlinear coupled problems with applications to elasto-plasticity.International Journal
for Numerical Methods in Engineering, 37:2471–2499, 1994.

[89] T. L. Wilson. Stretched grid generation. Technical Report Memo N-6-88-773, Los Alamos National
Laboratory, 1988.

[90] V. Maronnier, M. Picasso, and J. Rappaz. Numerical simulation of three-dimensional free surface
flows. International Journal for Numerical Methods in Fluids, 42:697–716, 2003.

[91] X. Jiao and M.T. Heath. Common-refinement-based data transfer between non-matching meshes in
multiphysics simulations.International Journal for Numerical Methods in Engineering, 61:2402–
2427, 2004.

[92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.Numerical Recipes in Fortran.
Cambridge, 1986.

[93] P. Thevoz, J.L. Desbiolles, and M. Rappaz. Modeling of equiaxed microstructure formation in casting.
Metallurgical transactions A, 20:311–322, 1989.

[94] M.E. Glicksman J. Lipton and W. Kurz. Equiaxed dendrite growth in alloys at small supercooling.
Metallurgical transactions A, 18:341–345, 1987.

[95] M. Rappaz and P. Thevoz. Solute diffusion model for equiaxed dendritic growth: analytical solution.
Acta Metallurgica, 35:2929–2933, 1987.

[96] A. Starobin, A. Kuprat, M. Stan, and S. Swaminarayan. Numerical coupling of a macro-scale casting
simulation code and meso-scale equiaxed dendritic growth models. InProceedings of 2004 ASME
Heat Transfer / Fluids Engineering Summer Conference, Charlotte, NC, USA, July 2004.

LA-UR-08-0819 TRUCHAS Physics and Algorithms 197

	Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	General Issues
	Mesh Structures
	Time Splitting
	Homogenization of Material Properties
	Solvers
	Parallel Paradigm
	Languages

	Joule Heating Model
	Phase Change and Thermal Models
	Radiative energy exchange
	Phase Diagrams
	Incompressible fluid flow
	Material advection step
	Velocity prediction step
	Pressure solve and velocity correction step

	Surface tension
	Chemical Reactions
	Solid Mechanics

	Fluid Dynamics
	Physics
	Assumptions and Approximations
	Equations
	Initial & Boundary Conditions
	Interaction With Other Physics
	Material Properties

	Algorithms
	Interface Kinematics
	Representing the Interface with Volume Fractions.
	An Overview of the Volume Tracking Algorithm.
	Estimating the Interface Normal.
	Locating the Interface.
	Representing Interfaces Bounding More Than Two Fluids.

	Interface Dynamics: Surface Tension
	Interface Topology
	Property Evaluation
	Momentum Equation
	Predictor Step
	Momentum Advection
	Momentum Diffusion
	Transfer the cell-centered Velocity to Faces
	Transfer of cell-centered velocities to faces when using orthogonal operators

	Projection
	Adjust Cell Centered Velocity for Pressure Gradient
	Flow Past Solid Material
	Flow Through Porous Media
	Treating Some Fluids as Void

	Heat Transfer and Phase Changes
	Physics
	Assumptions
	Material Properties
	Phase Diagrams
	Phase Changes
	Lever rule
	Scheil
	Clyne and Kurz
	Volume Change During Phase Change

	Boundary and Initial Conditions
	Radiative Boundary Conditions

	Conservation Law
	Boundary Conditions
	Interaction With Other Physics

	Heat Transfer Algorithm
	The Discrete Equations and the Non-linear Residual
	Preconditioninig
	Heat Sources/Sinks
	External Heat Source

	Chemical Reactions
	Physics
	Assumptions
	Interaction With Other Physics

	Algorithms

	Solid Mechanics
	Notation
	Physics
	Assumptions
	Equations
	Boundary and Initial Conditions
	Notation
	Boundary Conditions
	Sliding Interfaces and Contact
	Initial Conditions

	Interaction with Other Physics
	Material Properties
	Linear Elasticity
	MTS Viscoplastic Model
	Power Law Viscoplastic Model

	Algorithms
	Discretization
	Displacement Gradients
	Solution Algorithm for Quasi-Static Stresses and Strains
	Initialization
	Initial Thermo-Elastic Solution
	Non-Linear Thermo-Elastic-Viscoplastic Solution
	Residual Calculation:
	Boundary Conditions

	Preconditioning

	Electromagnetics
	Physics
	Assumptions
	Equations
	Boundary Conditions
	Magnetic driving fields.

	Interaction With Other Physics
	Material Properties

	Algorithms
	The Whitney Complex
	Spatial Discretization
	Time Discretization
	Linear Solution

	Parallelism
	Background on Parallel Programming
	Parallel Computer
	Shades of Grey
	Programming for Distributed Memory Parallel Computers

	SPMD Programming Model
	MPI
	Communication Library: PGSLib

	Developing Code In Truchas
	What Is Local Data, and What Is Global Data?
	Compute Locally
	Communication is Global
	Partitioning The Data
	Common Pitfalls

	Discrete Operators
	Summary
	Algorithm Overview

	Support-Operators
	Species Diffusion Component Support-Operators Formulation
	Mixed Hybrid Formulation

	Augustus Support-Operators Formulation

	Linear Solution Methods
	Direct and Stationary Iterative Methods
	Krylov Subspace Methods
	Multigrid Methods
	Hybrid Methods
	Approximating the Preconditioning Matrix
	Inverting the Preconditioning Matrix
	Introduction
	Fine Grid Solver
	Preconditioned Krylov Methods
	 Block Jacobi: Basic Domain Decomposition

	Coarse Grid Correction Scheme
	Future Work

	Nonlinear Solution Methods
	Jacobian-Free Newton-Krylov Method
	An Accelerated Inexact Newton Method
	Preconditioning

	Sensitivity Analysis
	Tensor Product Mesh Generation
	Description of a 1-D Ratio-Zoned Mesh
	Case 1: N is Given; Find
	Case 2: is Given; Find N
	Bounds for

	Parameterizing the 1-D Ratio-Zoned Mesh
	Summary
	Specifying a Tensor Product Mesh for Truchas

	Volume Fraction Generation
	Plane Truncation of Hexahedral Volumes
	Grid Mapping
	Introduction
	Theory
	Algorithms
	Finding Intersections
	Practical Geometry Considerations
	Sloppiness at the Boundary
	Element Blocks
	Relaxation of Face-Connected Mesh Assumption
	Gap Elements

	Treatment of nonplanar faces
	Computing Intersections
	Weighted Average vs. Exactly Conservative

	Numerical Results

	Nucleation and Growth
	Rappaz-Thévoz Model with One-Way Coupling
	Nucleation Model
	Growth Model
	One-Way Coupling Assumption
	Test Problem

	Displacement, Sliding Interface and Contact Constraints
	Notation
	One normal displacement
	Preconditioning matrix

	Two normal displacements
	Preconditioning matrix

	Three normal displacements
	Preconditioning matrix

	One normal constraint
	Preconditioning matrix

	Two normal constraints
	No Contact
	Contact with only one surface
	Contact with two surfaces but only one node
	Contact with two surfaces but two different nodes
	Two surfaces, two nodes, but only one normal

	Preconditioning matrix

	Three normal constraints
	Preconditioning matrix

	One normal constraint and one normal displacement
	Preconditioning matrix

	Two displacements, one normal constraint
	Preconditioning matrix

	One displacement, two normal constraints
	No Contact
	Contact with only one surface
	Contact with two surfaces but only one node
	Contact with two surfaces but two different nodes
	Two surfaces, two nodes, but only one normal

	Preconditioning matrix

	Bibliography

